Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Iron-sulfur clusters assembly ; Iron metabolism ; NifU protein ; Resonance Raman ; Rubredoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The NifS and NifU nitrogen fixation-specific gene products are required for the full activation of both the Fe-protein and MoFe-protein of nitrogenase from Azotobacter vinelandii. Because the two nitrogenase component proteins both require the assembly of [Fe-S]-containing clusters for their activation, it has been suggested that NifS and NifU could have complementary functions in the mobilization of sulfur and iron necessary for nitrogenase-specific [Fe-S] cluster assembly. The NifS protein has been shown to have cysteine desulfurase activity and can be used to supply sulfide for the in vitro catalytic formation of [Fe-S] clusters. The NifU protein was previously purified and shown to be a homodimer with a [2Fe-2S] cluster in each subunit. In the present work, primary sequence comparisons, amino acid substitution experiments, and optical and resonance Raman spectroscopic characterization of recombinantly produced NifU and NifU fragments are used to show that NifU has a modular structure. One module is contained in approximately the N-terminal third of NifU and is shown to provide a labile rubredoxin-like ferric-binding site. Cysteine residues Cys35, Cys62, and Cys106 are necessary for binding iron in the rubredoxin-like mode and visible extinction coefficients indicate that up to one ferric ion can be bound per NifU monomer. The second module is contained in approximately the C-terminal half of NifU and provides the [2Fe-2S] cluster-binding site. Cysteine residues Cys137, Cys139, Cys172, and Cys175 provide ligands to the [2Fe-2S] cluster. The cysteines involved in ligating the mononuclear Fe in the rubredoxin-like site and those that provide the [2Fe-2S] cluster ligands are all required for the full physiological function of NifU. The only two other cysteines contained within NifU, Cys272 and Cys275, are not necessary for iron binding at either site, nor are they required for the full physiological function of NifU. The results provide the basis for a model where iron bound in labile rubredoxin-like sites within NifU is used for [Fe-S] cluster formation. The [2Fe-2S] clusters contained within NifU are proposed to have a redox function involving the release of Fe from bacterioferritin and/or the release of Fe or an [Fe-S] cluster precursor from the rubredoxin-like binding site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Tungsten ; Aldehyde ferredoxin oxidoreductase ; Electron paramagnetic resonance ; Magnetic circular dichroism ; Iron-sulfur cluster
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Thermococcus litoralis (Tl) have been investigated by using the combination of EPR and variable-temperature magnetic circular dichroism (VTMCD) spectroscopies. The results reveal a [Fe4S4]2+,+ cluster (E m=−368 mV) that undergoes redox cycling between an oxidized form with an S=0 ground state and a reduced form that exists as a pH- and medium-dependent mixture of S=3/2 (g=5.4; E/D=0.33) and S=1/2 (g=2.03, 1.93, 1.86) ground states, with the former dominating in the presence of 50% (v/v) glycerol. Three distinct types of W(V) EPR signals have been observed during dye-mediated redox titration of as-isolated Tl FOR. The initial resonance observed upon oxidation, termed the “low-potential” W(V) species (g=1.977, 1.898, 1.843), corresponds to approximately 25–30% of the total W and undergoes redox cycling between W(IV)/W(V) and W(V)/W(VI) states at physiologically relevant potentials (E m=−335 and −280 mV, respectively). At higher potentials a minor “mid-potential” W(V) species, g=1.983, 1.956, 1.932, accounting for less than 5% of the total W, appears with a midpoint potential of −34 mV and persists up to at least +300 mV. At potentials above 0 mV, a major “high-potential” W(V) signal, g=1.981, 1.956, 1.883, accounting for 30–40% of the total W, appears at a midpoint potential of +184 mV. As-isolated samples of Tl FOR were found to undergo an approximately 8-fold enhancement in activity on incubation with excess Na2S under reducing conditions and the sulfide-activated Tl FOR was partially inactivated by cyanide. The spectroscopic and redox properties of the sulfide-activated Tl FOR are quite distinct from those of the as-isolated enzyme, with loss of the low-potential species and changes in both the mid-potential W(V) species (g=1.981, 1.950, 1.931; E m=−265 mV) and high-potential W(V) species (g=1.981, 1.952, 1.895; E m=+65 mV). Taken together, the W(V) species in sulfide-activated samples of Tl FOR maximally account for only 15% of the total W. Both types of high-potential W(V) species were lost upon incubation with cyanide and the sulfide-activated high-potential species is converted into the as-isolated high-potential species upon exposure to air. Structural models are proposed for each of the observed W(V) species and both types of mid-potential and high-potential species are proposed to be artifacts of ligand-based oxidation of W(VI) species. A W(VI) species with terminal sulfido or thiol ligands is proposed to be responsible for the catalytic activity in sulfide-activated samples of Tl FOR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...