Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. A strong correlation between bone mass and genetic factors has been shown in twins and family studies. Some of the genes involved would regulate bone metabolism, bone formation, and resorption, all processes that determine bone mass. One candidate genes, calcium-sensing receptor (CASR) in the parathyroid gland, regulates calcium homeostasis by sensing decreases in extracellular calcium level and effecting an increase in secretion of parathyroid hormone (PTH) and calcium (Ca) reabsorption in the kidney. We have investigated a possible association between the CA-repeat polymorphism at the human CASR gene locus and the bone mineral density (BMD) of radial bone in 472 postmenopausal Japanese women. Genotypes were classified into nine groups according to the number of CA repeats present, from 20 to 12. BMD was expressed as the adjusted BMD, which was the body mass index (BMI), and age-adjusted average BMD. The 247 women who had an A3 allele (228 bp, containing 18 repeats of CA) had significantly lower adjusted BMD (mean ± SD: 0.303 ± 0.059 versus 0.316 ± 0.063 g/cm2; P= 0.0308) than the participants (n = 201) who did not carry an allele of that size. This result suggests that genetic variation at the CASR gene locus is associated with some determinants for BMD in postmenopausal women.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 78-79 (Apr. 2001), p. 341-344 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Solid state phenomena Vol. 78-79 (Apr. 2001), p. 345-348 
    ISSN: 1662-9779
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0827
    Keywords: Key words: Osteoporosis — Bone mineral density — Genetic risk factor — Methylenetetrahydrofolate reductase — Homocysteine.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. The pathogenesis of osteoporosis is controlled by genetic and environmental factors. Considering the high prevalence of osteoporosis in homocystinuria, abnormal homocysteine metabolism would contribute to the pathogenesis of osteoporosis. It is known that the polymorphism of methylenetetrahydrofolate reductase (MTHFR), the enzyme catalyzing the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, correlates with hyperhomocysteinemia. In this study, we examined the association of this polymorphism with bone mineral density (BMD). BMD was measured by dual-energy X-ray absorptiometry (DXA) in 307 postmenopausal women. MTHFR A/V polymorphism was analyzed using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). We compared BMD, clinical characteristics, and bone metabolic markers among MTHFR groups (AA, AV, VV). The groups did not differ in terms of baseline data. The values of lumbar spine BMD and total body BMD were as follows: lumbar spine: AA, 0.91 ± 0.18, AV, 0.88 ± 0.16, VV, 0.84 ± 0.14 g/cm2; total body: AA, 0.97 ± 0.11, AV, 0.96 ± 0.11, VV, 0.93 ± 0.09 g/cm2. In the VV genotype, lumbar spine BMD values were significantly lower than those of the women with the AA genotype (P= 0.016) and total body BMD was significantly lower than those of the women with AA genotype (P= 0.03) and AV genotype (P= 0.04). This is the first report that suggests that the VV genotype of MTHFR is one of the genetic risk factors for low BMD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1435-232X
    Keywords: Key words Calcitonin gene ; Bone mineral density ; Osteoporosis ; Microsatellite polymorphism ; Risk factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Calcitonin (CT), a calcium-regulating hormone, lowers the calcium level in serum by inhibiting bone resorption. Because CT may play a role in the pathogenesis of osteoporosis, genetic variations in or adjacent to the CT gene may be associated with variations in bone mineral density (BMD). The present study examined the correlation between a dinucleotide (cytosine-adenine; CA) repeat polymorphism at the CT locus and BMD in 311 Japanese postmenopausal women (mean age, 64.1 years). Seven alleles were present in this population; each allele contained 10, 11, 16, 17, 18, 19, or 20 CA repeats. Thus, we designated the respective genotypes A10, A11, A16, A17, A18, A19, and A20. The A10 and A17 alleles were the predominant alleles in the population studied. Z scores (a parameter representing deviation from the age-specific weight-adjusted average BMD) were compared between individuals that possessed one or two alleles of each genotype and those that did not possess the allele. Subjects who possessed one or two A10 alleles had lower BMD Z scores than those who did not (lumbar 2–4 BMD Z score; −0.148 ± 1.23 vs 0.182 ± 1.54; P = 0.04). No significant relationships were observed between allelic status and background data or biochemical parameters. The significant association observed between BMD and genetic variations at the CT locus implies that polymorphism at this locus may be a useful marker for the genetic study of osteoporosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...