Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 1
    ISSN: 1573-885X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We investigate the effect of pulse flows of hydrogen, helium, and hydrogen–helium plasma of a specific power of 20–30 GW/m2 on the surface structure and mechanical properties of vanadium, niobium, and Kh16N15M3B and Kh18N10T austenitic stainless steels. Plasma bunches acted for 2 μsec with an average energy of particles of ≈ 2 keV. Tests of samples made of austenitic steels for tension showed that irradiation up to doses of ≈ 1018 cm−2 strengthens them by a factor of 1.8 and decreases the relative elongation by a factor of 2.3–2.7. A layer-by-layer electron-microscopic analysis revealed that a cellular structure is formed in the surface layer ≈ 25 μm in thickness as a result of irradiation, which explains the change in mechanical characteristics of the steels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-885X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We show that microadditions of yttrium significantly change the fine structure and properties of copper obtained by vacuum melting. In addition to the phases inherent in copper, there appear phases up to 20 nm in size, the number of precipitations of which increases with increase in the yttrium content. The solidus temperature of copper containing more than 0.04% of yttrium is equal to (860 ± 5)°C. For copper containing 0.03, 0.02, 0.01, and 0.005% of yttrium, the temperature is equal to 920, 1000, 1040, and 1057°C, respectively. The comparative analysis of the temperature dependence of the mechanical characteristics of strips of cathodic copper, vacuum inductive copper, vacuum electron-beam copper, and copper microalloyed with yttrium containing 0.01–0.03% of yttrium shows that, in the temperature range 20–600°C, copper microalloyed with yttrium has the best characteristics. Alloying of copper in the process of vacuum remelting with small additions of yttrium (0.01–0.02%) leads to both stabilization of copper and an increase in its conductivity as compared with the unalloyed copper obtained by vacuum melting.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...