Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 89 (2000), S. 366-376 
    ISSN: 1437-3262
    Keywords: Key words Cyclicity ; Tectonism ; Palaeogeography ; Iberian Chains ; Cambrian
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The stratigraphy of carbonate/shale couplets, cycles and cycle-stacking patterns in a Cambrian shallow water platform (Iberian Chains, NE Spain) are related to sea-level changes driven by orbital forcing and by tectonic pulses. The interplay of both effects can be discriminated in the Iberian fault-controlled platform, in which the tectonic activity can be analysed by accurate and detailed biostratigraphic correlations based on trilobite zonation. The stratigraphic hierarchy of rhythmically interbedded limestones and shales, in two coeval but structurally separated geodynamic settings, yields cycle ratios of 1.44 :1. This ratio is supported by time thickness and spectral analysis, which is based on a graphic method of analysis: the Map of Grey Lines. The cycle ratio seems to be evidence for orbital forcing by obliquity and precession cycles predicted for early Paleozoic time. Carbonate/shale couplets, the smallest rhythmic units recognisable in the field, represent short-term, periodic fluctuations in supply of terrigenous sediments and carbonate productivity of uncertain origin, which could be associated with one of several harmonics of the former orbital cycles. The pulsating tectonic activity was approximated by using a quantitative analysis of tectonically induced subsidence (Shaw method). Recurrence frequencies of tectonic pulses were estimated and dated by biostratigraphy. As a result, tectonic disturbances in the Cambrian Iberian platform show an episodic periodicity comparable to that of orbital eccentricity cycles, which could mask their recognition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 202 (2000), S. 257-264 
    ISSN: 1432-0568
    Keywords: Key words Extracellular material ; Tenascin ; Laminin ; Heparan sulfate proteoglycan ; Scanning electron microscopy ; Transmission electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The first rudiment of the central nervous system is a simple tube, the neural tube, and its cavities become the cerebro-ventricular system. The elements located within this system, their composition and precise morphogenetic role are poorly understood. This study used transmission (TEM) and scanning (SEM) electron microscopy, and immunoelectron microscopy, and describes in the chick the development, ultrastructure, composition, and regression of a previously undescribed extracellular structure located in close relationship with the luminal pole of the developing rhombencephalic tectoria lamina. We have called it the rhombencephalic roof network (RRN). The RRN was first observed in stage 12, closely related to a cluster of apoptotic cells. Between stages 15 and 18, the RRN attained its greatest development; it was rhomboid in shape and SEM revealed a network of fibers. Between stages 19 and 22, the RRN underwent a process of fragmentation and regression, and was not observed after stage 23. With TEM, the RRN appeared formed by amorphous ruthenium-red-positive material and sets of tubes between 4 and 25 nm in diameter. Each tube was formed by the superposition of annular units. Immunolabelling showed the presence of laminin and heparan sulfate proteoglycan in both the amorphous material and fibers; the former also contained tenascin. In terms of ultrastructure and composition, the fibers were similar to one the basic components of the lamina densa of basement membranes. The developing tectoria lamina exhibited openings as early as stage 12+, showing that the neural cavity is not a closed system and that the neural tube fluid (NTF) could be a circulating liquid. The presence in the RRN of three molecules of the extracellular materials actively involved in several developmental processes and the very early appearance of the RRN suggest that this structure plays a developmental role in rhombencephalic morphogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...