Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
  • 1
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] We found that PPM1D, encoding a serine/threonine protein phosphatase, lies within an epicenter of the region at 17q23 that is amplified in breast cancer. We show that overexpression of this gene confers two oncogenic phenotypes on cells in culture: attenuation of apoptosis induced by serum ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1439-6327
    Keywords: Key words Diaphragm ; Oxidative stress ; Fatigue ; Lipid peroxidation ; Antioxidants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract These experiments tested the hypothesis that short-term endurance exercise training would rapidly improve (within 5 days) the diaphragm oxidative/antioxidant capacity and protect the diaphragm against contraction-induced oxidative stress. To test this postulate, male Sprague-Dawley rats (6 weeks old) ran on a motorized treadmill for 5 consecutive days (40–60 min · day−1) at approximately 65% maximal oxygen uptake. Costal diaphragm strips were excised from both sedentary control (CON, n=14) and trained (TR, n=13) animals 24 h after the last exercise session, for measurement of in vitro contraction properties and selected biochemical parameters of oxidative/antioxidant capacity. Training did not alter diaphragm force-frequency characteristics over a full range of submaximal and maximal stimulation frequencies (P 〉 0.05). In contrast, training improved diaphragm resistance to fatigue as contraction forces were better-maintained by the diaphragms of the TR animals during a submaximal 60-min fatigue protocol (P 〈 0.05). Following the fatigue protocol, diaphragm strips from the TR animals contained 30% lower concentrations of lipid hydroperoxides compared to CON (P 〈 0.05). Biochemical analysis revealed that exercise training increased diaphragm oxidative and antioxidant capacity (citrate synthase activity +18%, catalase activity +24%, total superoxide dismutase activity +20%, glutathione concentration +10%) (P 〈 0.05). These data indicate that short-term exercise training can rapidly elevate oxidative capacity as well as enzymatic and non-enzymatic antioxidant defenses in the diaphragm. Furthermore, this up-regulation in antioxidant defenses would be accompanied by a reduction in contraction-induced lipid peroxidation and an increased fatigue resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...