Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2000-2004  (2)
Materialart
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 12 (2000), S. 1133-1142 
    ISSN: 1089-7666
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The decay of isotropic turbulence in a compressible flow is examined by direct numerical simulation (DNS). A priori analyses of the DNS data are then performed to evaluate three subgrid-scale (SGS) models for large-eddy simulation (LES): an eddy-diffusivity model (M1) [J. Fluid Mech. 238, 1 (1992)], a stress-similarity model (M2) [J. Fluid Mech. 275, 83 (1994)], and a gradient model (M3) [Theor. Comput. Fluid Dyn. 8, 309 (1996)]. The models exploit one-parameter second- or fourth-order filters of the Pade type, which permit the cutoff wave number kc to be tuned independently of the grid increment Δx. The modeled (M) and exact (E) SGS-stresses are compared component-wise by correlation coefficients of the form C(E,M) computed over the entire three-dimensional fields. In general, M1 correlates poorly against exact stresses (C〈0.2), M3 correlates moderately well (C(approximate)0.6), and M2 correlates remarkably well (0.8〈C〈1.0). Specifically, correlations C(E,M2) are high provided the grid and test filters are of the same order. Moreover, the highest correlations (C(approximate)1.0) result whenever the grid and test filters are identical (in both order and cutoff). Finally, present results reveal the exact SGS stresses obtained by grid filters of differing orders to be only moderately well correlated. This implies for LES that the model cannot be specified independently of the filter. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 2578-2589 
    ISSN: 1089-7666
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Specifically, the first few terms of the exact residual stress τkl are obtained in (general) terms of the Taylor coefficients of the grid filter. Also, by expansion of the test filter, a similar expression results for the resolved turbulent stress tensor Lkl in terms of the Taylor coefficients of both the grid and test filters. Comparison of the expansions for τkl and Lkl yields the grid- and test-filter dependent value of the constant cL in the scale-similarity model of Liu et al. [J. Fluid Mech. 275, 83 (1994)]. Until recently, little attention has been given to issues related to the convergence of such expansions. To this end, we re-express the convergence criterion of Vasilyev et al. [J. Comput. Phys. 146, 82 (1998)] in terms of the transfer function and the cutoff wave number of the filter. As a rule of thumb, the less dissipative the filter (e.g., the higher the cutoff), the faster the rate of convergence. © 2001 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...