Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    European journal of soil science 55 (2004), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Earthworms play an important role in protecting carbon in the soil, but the exact influence of their activity on the distribution and protection of C is still poorly understood. We investigated the effect of earthworms on the formation of stable microaggregates inside newly formed macroaggregates and the distribution of C in them. We crushed (〈 250 µm) soil, and subjected it to three treatments: (i) soil + 13C-labelled residue + earthworms (these added after 8 days' incubation), (ii) soil + 13C-labelled residue, and (iii) control (no additions), and then incubated it for 20 days. At the end, we measured the aggregate size distribution, total C and 13C, and we isolated microaggregates (53–250 µm) from macroaggregates (〉 250 µm) formed. The 13C in fine particulate organic matter between and within the microaggregates was determined. Earthworms helped to form large macroaggregates (〉 2000 µm). These large macroaggregates contained four times more stable microaggregates than those from samples without earthworms. There was more particulate organic matter within and between microaggregates in macroaggregates in the presence of earthworms. The larger amounts of organic matter inside stable microaggregates in casts than in bulk soil after 12 days of incubation (140 mg 13C kg−1 soil compared with 20 mg 13C kg−1 soil) indicates that these microaggregates are formed rapidly around freshly incorporated residues within casts. In conclusion, earthworms have a direct impact on the formation of stable microaggregates and the incorporation of organic matter inside these microaggregates, and it seems likely that their activity is of great significance for the long-term stabilization of organic matter in soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 51 (2000), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Identifying ‘functional' pools of soil organic matter and understanding their response to tillage remains elusive. We have studied the effect of tillage on the enriched labile fraction, thought to derive from microbes and having an intermediate turnover time. Four soils, each under three regimes, long-term arable use without tillage (NT), long-term arable under conventional tillage (CT), and native vegetation (NV), were separated into four aggregate size classes. Particle size fractions of macro- (250–2000 μm) and microaggregates (53–250 μm) were isolated by sonication and sieving. Subsequently, densiometric and chemical analyses were made on fine-silt-sized (2–20 μm) particles to isolate and identify the enriched labile fraction. Across soils, the amounts of C and N in the particle size fractions were highly variable and were strongly influenced by mineralogy, specifically by the contents of Fe and Al oxides. This evidence indicates that the fractionation procedure cannot be standardized across soils. In one soil, C associated with fine-silt-sized particles derived from macroaggregates was 567 g C m−2 under NV, 541 g C m−2 under NT, and 135 g C m−2 under CT, whereas C associated with fine-silt-sized particles derived from microaggregates was 552, 1018, 1302 g C m−2 in NV, NT and CT, respectively. These and other data indicate that carbon associated with fine-silt-sized particles is not significantly affected by tillage. Its location is simply shifted from macroaggregates to microaggregates with increasing tillage intensity. Natural abundance 13C analyses indicated that the enriched labile fraction was the oldest fraction isolated from both macro- and microaggregates. We conclude that the enriched labile fraction is a ‘passive' pool of soil organic matter in the soil and is not derived from microbes nor sensitive to cultivation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 52 (2001), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: It is generally accepted that particulate organic matter derives from plants. In contrast, the enriched labile fraction is thought by many to derive from microbes, especially fungi. However, no detailed chemical characterization of these fractions has been done. In this study, we wanted to assess the sources (plants or microbes; fungi or bacteria) and degree of microbial alteration of (i) three particulate organic matter fractions – namely the free light fraction (1.85 g cm−3), the coarse (250–2000 μm) and the fine (53–250 μm) intra-aggregate particulate organic matter fractions – and of (ii) three density fractions of fine-silt associated carbon – namely 〈 2.0, 2.0–2.2 (i.e. enriched labile fraction) and 〉 2.2 g cm−3– by analysing the amino sugars, by CuO oxidation analyses, and by 13C-, 1H- and 31P-NMR analyses. Macroaggregates (250–2000 μm) were separated by wet-sieving from a former grassland soil now under a no-tillage arable regime. The three particulate organic matter fractions and the three density fractions were isolated from the macroaggregates by a combination of density flotation, sonication and sieving techniques. Proton NMR spectroscopy on alkaline extracts showed that the enriched labile fraction is not of microbial origin but is strongly degraded plant material that is enriched in aliphatic moieties partly bound to aromatics. In addition, the enriched labile fraction had a glucosamine content less than the whole soil, indicating that it is not enriched in carbon derived from fungi. Decreasing yields of phenolic CuO oxidation products and increasing side-chain oxidation in the order coarse intra-aggregate particulate organic matter 〈 fine inter-aggregate particulate organic matter 〈 fine-silt fractions indicate progressive alteration of lignin as particle size decreases. The light fraction was more decomposed than the coarse inter-aggregate particulate organic matter, as indicated by (i) its larger ratio of acid-to-aldehyde of the vanillyl units released by CuO oxidation, (ii) the smaller contribution of H in carbohydrates to total extractable H as estimated by 1H-NMR spectroscopy, and (iii) a larger contribution of monoester P to total extractable P in the 31P-NMR spectra. In conclusion, the four fractions are derived predominantly from plants, but microbial alteration increased as follows: coarse inter-aggregate particulate organic matter 〈 light fraction ≈ fine inter-aggregate particulate organic matter 〈 enriched labile fraction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 64 (2000), S. 681-688 
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 64 (2000), S. 1042-1049 
    ISSN: 1435-0661
    Keywords: CT, conventional tillage NSI, normalized stability index NT, no-tillage NV, native vegetation SOM, soil organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 48 (2000), S. 147-163 
    ISSN: 1573-515X
    Keywords: carbon sequestration ; crop rotation ; greenhouse gas mitigation ; no-till ; soil organic matter ; soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Crop-based agriculture occupies 1.7 billion hectares, globally, with a soil C stock of about 170 Pg. Of the past anthropogenic CO2 additions to the atmosphere, about 50 Pg C came from the loss of soil organic matter (SOM) in cultivated soils. Improved management practices, however, can rebuild C stocks in agricultural soils and help mitigate CO2 emissions. Increasing soil C stocks requires increasing C inputs and/or reducing soil heterotrophic respiration. Management options that contribute to reduced soil respiration include reduced tillage practices (especially no-till) and increased cropping intensity. Physical disturbance associated with intensive soil tillage increases the turnover of soil aggregates and accelerates the decomposition of aggregate-associated SOM. No-till increases aggregate stability and promotes the formation of recalcitrant SOM fractions within stabilized micro- and macroaggregate structures. Experiments using13 C natural abundance show up to a two-fold increase in mean residence time of SOM under no-till vs intensive tillage. Greater cropping intensity, i.e., by reducing the frequency of bare fallow in crop rotations and increasing the use of perennial vegetation, can increase water and nutrient use efficiency by plants, thereby increasing C inputs to soil and reducing organic matter decomposition rates. Management and policies to sequester C in soils need to consider that: soils have a finite capacity to store C, gains in soil C can be reversed if proper management is not maintained, and fossil fuel inputs for different management practices need to be factored into a total agricultural CO2 balance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...