Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Plant responses to elevated atmospheric CO2 have been characterized generally by stomatal closure and enhanced growth rates. These responses are being increasingly incorporated into global climate models that quantify interactions between the biosphere and atmosphere, altering climate predictions from simpler physically based models. However, current information on CO2 responses has been gathered primarily from studies of crop and temperate forest species. In order to apply responses of vegetation to global predictions, CO2 responses in other commonly occurring biomes must be studied. A Free Air CO2 Enrichment (FACE) study is currently underway to examine plant responses to high CO2 in a natural, undisturbed Mojave Desert ecosystem in Nevada, USA. Here we present findings from this study, and its companion glasshouse experiment, demonstrating that field-grown Ephedra nevadensis and glasshouse-grown Larrea tridentata responded to high CO2 with reductions in the ratio of transpirational surface area to sapwood area (LSR) of 33% and 60%, respectively. Thus, leaf-specific hydraulic conductivity increased and stomatal conductance remained constant or was increased under elevated CO2. Field-grown Larrea did not show a reduced LSR under high CO2, and stomatal conductance was reduced in the high CO2 treatment, although the effect was apparent only under conditions of unusually high soil moisture. Both findings suggest that the common paradigm of 20–50% reductions in stomatal conductance under high CO2 may not be applicable to arid ecosystems under most conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Differently oriented leaves of Yucca schidigera and Yucca brevifolia were characterized in the Mojave Desert with respect to photosystem II and xanthophyll cycle activity during three different seasons, including the hot and dry summer, the relatively cold winter, and the mild spring season. Photosynthetic utilization of a high percentage of the light absorbed in PSII was observed in all leaves only during the spring, whereas very high levels of photoprotective, thermal energy dissipation were employed both in the summer and the winter season in all exposed leaves of both species. Both during the summer and the winter season, when energy dissipation levels were high diurnally, xanthophyll cycle pools (relative to either Chl or other carotenoids) were higher relative to the spring, and a nocturnal retention of high levels of zeaxanthin and antheraxanthin (Z + A) occurred in all exposed leaves of both species. Although this nocturnal retention of Z + A was associated with nocturnal maintenance of a low PSII efficiency (Fv/Fm) on a cold winter night, pre-dawn Fv/Fm was high in (Z + A)-retaining leaves following a warm summer night. This indicates nocturnal engagement of Z + A in a state primed for energy dissipation throughout the cold winter night – while high levels of retained Z + A were not engaged for energy dissipation prior to sunrise on a warm summer morning. Possible mechanisms for a lack of sustained engagement of retained Z + A for energy dissipation at elevated temperatures are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...