Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004  (2)
Material
Years
Year
  • 1
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Evidence is presented here from the northern Scandinavian Caledonides for development of an extensional basin of Ashgill to Mid Llandovery age along the Baltoscandian margin immediately prior to Baltica–Laurentia collision. U/Pb multigrain and ion microprobe zircon dating of plagiogranites in the Halti Igneous Complex complement previous baddeleyite and zircon dating of a dolerite dyke, and zircon dating of anatectic granite; they demonstrate that this dunite, troctolite, gabbro, sheeted-dyke complex ranges in age from c. 445 to 435 Ma. The dolerite dykes intruded and melted arkoses of inferred Neoproterozoic age. This evidence, taken together with previous documentation of ophiolites (Solund–Stavfjord), ophiolite-like associations (Sulitjelma Igneous Complex) and several other mafic suites (e.g. Råna, Artfjället) of Ashgill to Llandovery age further south in the northern Scandinavian Caledonides, implies that Scandian collisional orogeny along this nearly 2000-km-long mountain belt was immediately preceeded by development of short-lived marginal basins. The latter developed during the final closure of the Iapetus Ocean and are inferred to be of back-arc origin, some (perhaps all) related to E-dipping subduction. Collision of the continents at c. 435 Ma is inferred to have induced a flip in subduction polarity, leading to underthrusting of Laurentia by Baltica.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chlorophyll a and nutrient concentrations along with temperature and salinity values were measured at 22 CTD stations along a 735-km transect running to the northwest of the island of South Georgia, Southern Ocean. Measurements were repeated during five summer surveys (January and February 1994, January 1996, December 1996, January 1998) and one spring survey (October 1997). The transect sampled Sub-Antarctic Zone water in the north, Polar Frontal Zone water and Antarctic Zone water in the south. Chlorophyll a concentrations were lowest to the north of the transect and frequently high (up to 17 mg m−3) in the deep open ocean of the Antarctic Zone. Sub-surface peaks were measured in all zones and chlorophyll a was detectable to a depth of 150 m. There was a clear latitudinal temperature gradient in the near-surface waters (0–50 m), the warmest water occurring in the north (∼12 °C), and the coolest in the Antarctic Zone (∼2 °C). There was also a well-defined latitudinal gradient in summer near-surface silicate concentrations (∼2, 4, and 10 mmol m−3 in the Sub-Antarctic Zone, the Polar Frontal Zone and the Antarctic Zone, respectively), increasing to 〉20 mmol m−3 near South Georgia. Distinct differences in silicate concentrations were also evident in all three zones to a depth of 500 m. Near-surface nitrate and phosphate concentrations were relatively low to the north of the transect (∼14 and 1 mmol m−3, respectively) and higher in the Polar Frontal Zone and Antarctic Zone (∼18 and 1.4 mmol m−3, respectively). Ammonium and nitrite were restricted to the upper 200 m of the water column, and exhibited sub-surface concentration peaks, the lowest being in the Sub-Antarctic Zone (0.68 and 0.25 mmol m−3, respectively) and the highest in the Antarctic Zone (1.72 and 0.29 mmol m−3, respectively). Surface (∼6 m) spring nutrient measurements provided an indication of pre-bloom conditions; ammonium and nitrite concentrations were low (∼0.27 and 0.28 mmol m−3, respectively), while silicate, nitrate and phosphate concentrations were high and similar to previously measured winter values (e.g. ∼26, 23, 2 mmol m−3, respectively in the Antarctic Zone). Although the values measured were very variable, and there was some evidence of a seasonal growth progression, the chlorophyll a and nutrient distribution patterns were dominated by intercruise (interannual) factors. Approximate nutrient depletions (spring minus summer) appeared similar in the Polar Frontal Zone and Antarctic Zone for nitrate and phosphate, while silicate showed a marked latitudinal increase from north to south throughout the transect. Highest chlorophyll a concentrations coincided with the highest apparent silicate depletions over the deep ocean of the Antarctic Zone. In this area, relatively warm, easterly flowing Antarctic Circumpolar Current water meets cooler, westerly flowing water that is influenced by the Weddell-Scotia Confluence and is rich in nutrients, especially silicate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...