Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2000-2004  (2)
Materialart
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 6416-6423 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The equilibrium concentration of ionic and electronic charge carriers in ionic crystals as a function of temperature, concentration of dopants, and chemical environment is phenomenologically well understood as long as these point defects can be considered sufficiently dilute. However, there are cases, usually at temperatures close to the melting point, where the defects appear in higher concentrations. In these cases interactions come into play and cause anomalous increases in the conductivity or even phase transitions. Recently Hainovsky and Maier showed that for various Frenkel disordered materials this anomalous conductivity increase at high temperature can be described by a cube root term in the chemical potential of the defects. This quasi-Madelung approach does not only allow ionic conductivities and heat capacities to be computed, it also leads to a phenomenological understanding of the solid–liquid or superionic transition temperatures. In the present study we analyze this approach on the atomistic level for AgI: The defect concentrations as well as defect energies, including excess energies, are computed as a function of temperature by molecular-dynamics and Monte Carlo simulations based on a classical semiempirical potential. The simulations support the cube-root model, yield approximately the same interaction constants and show that the corrections in the chemical potential are of an energetic nature. In agreement with structural expectations, the simulations reveal that two different kinds of interstitials are present: Octahedral interstitials, which essentially determine the ionic transport at higher temperature, and tetrahedral ones, which remain substantially associated with the vacancies. It is shown how these refinements have to be introduced into the cube root. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    The European physical journal 34 (2003), S. 447-453 
    ISSN: 1434-6036
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract. The competition between spin glass (SG), antiferromagnetism (AF) and Kondo effect is studied here in a model which consists of two Kondo sublattices with a Gaussian random interaction between spins in different sublattices with an antiferromagnetic mean J 0 and standard deviation J. In the present approach there is no hopping of the conduction electrons between the sublattices and only spins in different sublattices can interact. The problem is formulated in the path integral formalism where the spin operators are expressed as bilinear combinations of Grassmann fields which can be solved at mean field level within the static approximation and the replica symmetry ansatz. The obtained phase diagram shows the sequence of phases SG, AF and Kondo state for increasing Kondo coupling. This sequence agrees qualitatively with experimental data of the Ce2Au1-x Co x Si3 compound.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...