Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 96 (1992), S. 1575-1578 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 94 (1990), S. 7785-7789 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 12-19 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 6449-6455 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The time-dependent formulation for vibrational predissociation of weakly bound complexes within the golden rule treatment is presented. The quantum wave packet propagation in this formulation eliminates the difficulty of strenuous long time propagation of the full wave function due to long-lived resonance which occurs in the more exact time-dependent treatment. As a result, the new time-dependent treatment of vibrational predissociation essentially parallels that of direct photodissociation and therefore requires only short time propagation of the wave function. The wave packet propagation is efficiently carried out in the interaction picture and numerical calculations of rotational state distributions and the total decay width are presented for vibrational predissociation of HeCl2. Correct rotational state distribution can be obtained with only a few time propagation steps owing to the use of large step size allowed in the interaction picture. Our approach provides an efficient method for the calculation of vibrational predissociation for more complex systems such as those with more than three atoms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 324-331 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new approach for solving the time-dependent wave function in quantum scattering problem is presented. The conventional wave packet method, which directly solves the time-dependent Schrödinger equation, normally requires a large number of grid points since the Schrödinger picture wave function both travels and spreads in time. Also, since the Schrödinger picture wave function oscillates in time with frequency ω=E/(h-dash-bar), a very small time increment is required to integrate the Schrödinger equation, especially for high energy collisions. The new method presented in this paper transforms the Schrödinger picture wave function into the interaction picture and carries out the integration in it. The new approach is superior to conventional one in that (1) a smaller numerical grid is required due to the localized nature of the interaction picture wave function, since it is not a traveling wave and does not spread appreciably in coordinate space, and thus behaves like a bound state wave function. (2) The interaction picture wave function varies slowly with time and is essentially independent of energy, permitting the use of a large time increment in the numerical integration. Because of these two features in this new approach, we are able to integrate the time dependent wave function once and obtain an accurate S matrix over a wide range of energy efficiently.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 4729-4734 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The thermal desorption rate of a gas molecule from a solid surface has been derived using a stochastic time-dependent perturbation method. In this approach the solid surface is modeled by a fluctuating thermal bath which exerts a random force on the gas molecule. The rate of desorption is derived using a first order time-dependent perturbation method and an ensemble averaging over the distribution of random force. We use a generalized Langevin equation to model the stochastic process. The final operator expression of the rate constant contains two parameters pertaining to the solid surface, i.e., temperature T and the friction kernel γ(t). A simple analytical expression is given when the molecule–surface bond is approximated by a truncated-harmonic potential, and both the high temperature and low temperature limits of the rate constant are given in this approximation. Simplified expression of rate constant is also obtained in the limit of Markovian approximation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 6047-6054 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: This paper describes several efficient basis optimization methods that we have developed in the application of S-matrix Kohn variational method to quantum reactive scattering. Specifically, we employ a minimum-K body-fixed representation combined with the use of quasiadiabatic basis functions for the expansion of the full reactive scattering wave function. This new basis function approach significantly reduces the size of the "larger'' matrix of the final linear algebraic equation in the calculation of reaction cross sections. The accuracy of the calculation can be easily controlled by systematically increasing or decreasing the values of two parameters Kmax and α, and convergence to the full basis set results can be reached. Numerical test calculations are carried out for the 3D H+H2 reaction for the total angular momentum J=10 and for the 3D F+H2 reaction for J=0, 1, and 2. These calculations demonstrate that our basis optimization approach is very efficient for computing reaction cross sections. Since variational scattering calculations are ultimately limited by the size of the basis set, our method is a stride forward in the applications of variational approach to quantum reactive scattering.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 5356-5357 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: During quantum reactive scattering calculations for the title reaction a pronounced resonance structure became apparent in the energy dependence of state−to−state differentialscattering calculations. This resonance structure is explained.(AIP)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 3149-3156 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Calculations of the total and partial decay widths are presented for the vibrational predissociation of H2HF. The calculation is done for the total angular momentum J=0 of the molecule and for the dissociation process H2HF(v=1)→H2(v=0)+HF(v=0). A time-dependent golden rule wave packet method is employed in the numerical calculation for the decay widths. The lifetime of the complex is determined from our calculation to be about 600 ns for para- and 1600 ns for ortho-H2HF. These values are much larger than the experimentally measured value of 27 ns for ortho-H2HF. The large discrepancy in lifetime for H2HF is in sharp contrast to the excellent agreement in lifetime for D2HF between theory and experiment, though the same potential energy surface is used in both calculations. We also present the rotational state distribution of the fragments H2 and HF following the vibrational predissociation of H2HF. It is found that about 58% of the final rotational population is in j=4 states of H2 for para-H2HF and about 48% is in j=5 states of H2 for ortho-H2HF.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 6784-6791 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A general theoretical treatment employing a time-independent algebraic variational method (S-matrix Kohn variational method) for dissociative adsorption of a diatomic molecule on a smooth metal surface is presented. The time-independent scattering treatment using the S-matrix Kohn variational method naturally enables one to obtain accurate state-to-state reaction probabilities for dissociative adsorption of molecules on surfaces. In this paper, the S-matrix Kohn variational method is adapted to the 3D dissociative adsorption of H2 on Ni(100) surface treated as a flat surface, and the state-to-state transition probabilities are obtained. The dependence of the dissociation probabilities on the initial rovibrational state of H2(vjm) is examined. As a result of flat surface approximation, which conserves the rotation quantum number jz=m, the exchange symmetry of H2 has an important consequence on the vibrations of the adsorbates. Specially if the rotational state of H2 satisfies the condition j+m=odd, the vibrational quantum number of two adsorbed hydrogen atoms must be different. The orientational effect of rotation is such that the in-plane rotation (m=j) is more favorable for molecular dissociation on surface than the out-of-plane rotation (m=0).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...