Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 194-201 
    ISSN: 0006-3592
    Schlagwort(e): denitrification kinetics ; nitrite inhibition model ; Pseudomonas fluorescens ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Using a pure culture of Pseudomonas fluorescens as a model system nitrite inhibition of denitrification was studies. A mineral media with acetate and nitrate as sole electron donor and acceptor, respectively, was used. Results obtained in continuous stirred-tank reactors (CSTR) operated at pH values between 6.6 and 7.8 showed that growth inhibition depended only on the nitrite undissociated fraction concentration (nitrous acid). A mathematical model to describe this dependence is put forward. The maximum nitrous acid concentration compatible with cell growth and denitrification activity was found to be 66 μg N/L. Denitrification activity was partially associated with growth, as described by the Luedeking-Piret equation. However, when the freshly inoculated reactor was operated discontinuosly, nitrite accumulation caused growth uncoupling from denitrification activity. The authors suggest that these results can be interpreted considering that (a) nitrous acid acts as a proton uncoupler; and (b) cultures continuoulsy exposed to nitrous acid prevent the uncoupling effect but not the growth inhibition. Examination of the growth dependence on nitrite concentration at pH 7.0 showed that adapted cultures (grown on CSTR) are less sensitive to nitrous acid inhibition than the ones cultivated in batch. © 1995 John Wiley & Sons, Inc.
    Zusätzliches Material: 12 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 476-484 
    ISSN: 0006-3592
    Schlagwort(e): denitrification ; substrate limitation ; competition ; kinetic model ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: A pure culture of Pseudomonas fluorescens was used as a model system to study the kinetics of denitrification. An exponentially growing culture was harvested and resuspended in an anoxic acetate solution buffered with K/Na phosphate at pH values of 6.6, 7.0, 7.4, and 7.8. The temperature was kept at 28°C in all assays. Nitrate pulses of approximately 0.2 mg N/L caused nitrite to accumulate due to a faster rate of nitrate reduction over nitrite reduction. The rate of nitrate reduction was observed to depend on its concentration as predicted by the Michaelis-Menten equation. At nonlimiting nitrate concentrations, nitrite reduction was described by the same equation. Otherwise, nitrite reduction also depended on nitrate concentration. Consequently, nitrate and nitrite reductions compete with each other for the oxidation of common electron donors. A kinetic model for nitrate competitive inhibition of nitrite reduction is proposed. The model was used to interpret the nitrate and nitrite profiles observed at the four pH values: the optimum pH value was 7.0 in both cases; the affinity for nitrite was also not affected by the medium pH in the range of values 6.6 to 7.4 (KmNO3 = 0.04 mg N/L); the affinity for nitrite was also not affected by the medium pH in the range of values 6.6 to 7.4 (KmNO2 = 0.06 mg N/L), but it decreased sharply for the pH value of 7.8. Although the ratio between the two maximum reduction rates (Vmax NO2/Vmax NO3) is constant, nitrite accumulation depends on the medium pH value. Therefore, the regulation mechanism that shifts the electron flow between the two terminal reductases is readily reversible and does not change their relative maximum reduction rates. © 1995 John Wiley & Sons, Inc.
    Zusätzliches Material: 12 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...