Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 1241-1262 
    ISSN: 0271-2091
    Keywords: axisymmetric flow ; vortex method ; laminar flow ; entrance length ; steady and oscillating flows ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Steady and oscillating axisymmetric tube flows are modelled using a vorticity transport algorithm. The axisymmetric convective -diffusive Navier-Stokes equations are solved using a splitting technique. Axisymmetric ring vortex filaments are introduced on the walls and subsequently convected and diffused throughout the flow field. An axisymmetric equation similar to the Oseen diffusion equation is used to diffuse the ring vortex filaments. Vorticity is reflected from the tube walls using two techniques. Results are presented for the developing Poiseuille flow and for the developed flow in the form of the entrance length and the axial velocity and vorticity profiles. Good agreement is achieved with a finite difference method in the developing region of Poiseuille flow. The developed flow results are compared with the analytical solutions. The developed profiles of velocity and vorticity have errors of less than 0ċ3 per cent for both methods of dealing with reflection of diffusion at the bounding surfaces and similar accuracy is obtained for the velocity profiles in oscillating flow except at the wall. Oscillating flow is produced with a discretized sinusoidal piston motion. Velocity profiles, boundary layer thickness and entrance length are presented for oscillating flow. Good agreement is achieved for low-Womersley-number non-dimensional frequency. At higher values of this parameter, flows are inaccurately simulated, because the number of piston positions used to discretize the piston motion is inversely proportional to the non-dimensional frequency.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 24 (1997), S. 1321-1340 
    ISSN: 0271-2091
    Keywords: parallel flow simulation ; complex geometries ; mesh generation ; automobile ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We present our numerical methods for the solution of large-scale incompressible flow applications with complex geometries. These methods include a stabilized finite element formulation of the Navier-Stokes equations, implementation of this formulation on parallel architectures such as the Thinking Machines CM-5 and the CRAY T3D, and automatic 3D mesh generation techniques based on Delaunay-Voronoi methods for the discretization of complex domains. All three of these methods are required for the numerical simulation of most engineering applications involving fluid flow.We apply these methods to the simulation of airflow past an automobile and fluid-particle interactions. The simulation of airflow past an automobile is of very large scale with a high level of detail and yielded many interesting airflow patterns which help in understanding the aerodynamic characteristics of such vehicles. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...