Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 170 (1998), S. 442-450 
    ISSN: 1432-072X
    Keywords: Key words Tissierella creatinophila ; Sarcosine ; reductase ; Protein C ; Protein A ; Protein Bsarcosine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sarcosine reductase is the only reductase system present in Tissierella creatinophila when grown on creatinine plus formate. The acetyl-phosphate-forming component protein C was purified to homogeneity. SDS-PAGE of the purified protein revealed two protein bands with apparent mol. masses of 62 and 50 kDa. The N-terminal amino acid sequence of the two subunits was determined. Antibodies raised against each of the subunits of protein C from Eubacterium acidaminophilum cross-reacted with the corresponding protein present in T. creatinophila, Clostridium litorale and Clostridium sporogenes. The arsenate-dependent hydrolysis of acetyl phosphate catalyzed by protein C was partly inhibited by antibodies directed against the large subunit. Antibodies raised against the small subunit were twice as effective, which indicates that this subunit is the primary site of acetyl transfer from acetyl phosphate. The protein A component of the sarcosine reductase of T. creatinophila was purified to homogeneity by cochromatography with thioredoxin reductase on DEAE-Sephacel, hydroxylapatite, Q-Sepharose, and Sephacryl 100-HR. Protein A had an apparent mol. mass of 21 kDa. Its N-terminal amino acid sequence showed high similarities to that of other proteins A. Initial steps for the purification and preliminary characterization of the sarcosine-specific, substrate-binding protein Bsarcosine component of T. creatinophila indicated the involvement of a 50-kDa protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 171 (1999), S. 417-423 
    ISSN: 1432-072X
    Keywords: Key words Alanine dehydrogenase ; Ammonia ; assimilation ; Mycobacterium ; Morpholine degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An NAD-dependent, morpholine-stimulated l-alanine dehydrogenase activity was detected in crude extracts from morpholine-, pyrrolidine-, and piperidine-grown cells of Mycobacterium strain HE5. Addition of morpholine to the assay mixture resulted in an up to 4.6-fold increase of l-alanine dehydrogenase activity when l-alanine was supplied at suboptimal concentration. l-Alanine dehydrogenase was purified to near homogeneity using a four-step purification procedure. The native enzyme had a molecular mass of 160 kDa and contained one type of subunit with a molecular mass of 41 kDa, indicating a tetrameric structure. The sequence of 30 N-terminal amino acids was determined and showed a similarity of up to 81% to that of various alanine dehydrogenases. The pH optimum for the oxidative deamination of l-alanine, the only amino acid converted by the enzyme, was determined to be pH 10.1, and apparent K m values for l-alanine and NAD were 1.0 and 0.2 mM, respectively. K m values of 0.6, 0.02, and 72 mM for pyruvate, NADH, and NH4 +, respectively, were estimated at pH 8.7 for the reductive amination reaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 168 (1997), S. 328-337 
    ISSN: 1432-072X
    Keywords: Key words Thioredoxin ; Thioredoxin reductase ; Glycine reductase ; Disulfide exchange reaction ; Clostridium litorale
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The genes encoding thioredoxin and thioredoxin reductase of Clostridium litorale were cloned and sequenced. The thioredoxin reductase gene (trxB) encoded a protein of 33.9 kDa, and the deduced amino acid sequence showed 44% identity to the corresponding protein from Escherichia coli. The gene encoding thioredoxin (trxA) was located immediately downstream of trxB. TrxA and TrxB were each encoded by two gene copies, both copies presumably located on the chromosome. Like other thioredoxins from anaerobic, amino-acid-degrading bacteria investigated to date by N-terminal amino acid sequencing, thioredoxin from C. litorale exhibited characteristic deviations from the consensus sequence, e.g., GCVPC instead of WCGPC at the redox-active center. Using heterologous enzyme assays, neither thioredoxin nor thioredoxin reductase were interchangeable with the corresponding proteins of the thioredoxin system from E. coli. To elucidate the molecular basis of that incompatibility, Gly-31 in C. litorale thioredoxin was substituted with Trp (the W in the consensus sequence) by site-directed mutagenesis. The mutant protein was expressed in E. coli and was purified to homogeneity. Enzyme assays using the G31W thioredoxin revealed that Gly-31 was not responsible for the observed incompatibility with the E. coli thioredoxin reductase, but it was essential for activity of the thioredoxin system in C. litorale.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 45 (1996), S. 458-464 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Inactivation ofd-amino acid oxidase occured by different mechanisms. The enzyme showed a rapid loss of activity in the presence of micromolar amounts of Cu2+ and Hg2+. It was also sensitive to oxidative inactivation by Fe2+ and H2O2 when both reagents were added in millimolar amounts. When oxidatively inactivatedd-amino acid oxidase and a corresponding non-treated control were modified with the sulfhydryl-modifying, fluorescent reagent monobromobimane and subsequently digested with endoproteinase Glu-C, Cys-298 was identified to be a target for oxidative modification according to differences in the known peptide profile of fluorescence intensity. Another reason for the observed loss of enzyme activity in crude extracts was the specific proteolytic digestion ofd-amino acid oxidase, which was dependent on the growth phase of the cells used. This cleavage was catalyzed by a serine-type proteinase and was the introductory step for the further complete degradation of the enzyme. In addition, a coenriched 50-kDa protein, identified as NADPH-specific glutamate dehydrogenase, significantly decreased the stability of thed-amino acid oxidase activity. Treatment of apo-d-amino acid oxidase fromT. variabilis with monobromobimane resulted in a significantly increased fluorescence of two peptides, neither of which contained any cysteine residue. Thus, an involvement of cysteine residues in binding the FAD coenzyme should be excluded.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 45 (1996), S. 458-464 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  Inactivation of D-amino acid oxidase occurred by different mechanisms. The enzyme showed a rapid loss of activity in the presence of micromolar amounts of Cu2+ and Hg2+. It was also sensitive to oxidative inactivation by Fe2+ and H2O2 when both reagents were added in millimolar amounts. When oxidatively inactivated D-amino acid oxidase and a corresponding non-treated control were modified with the sulfhydryl-modifying, fluorescent reagent monobromobimane and subsequently digested with endoproteinase Glu-C, Cys-298 was identified to be a target for oxidative modification according to differences in the known peptide profile of fluorescence intensity. Another reason for the observed loss of enzyme activity in crude extracts was the specific proteolytic digestion of D-amino acid oxidase, which was dependent on the growth phase of the cells used. This cleavage was catalyzed by a serine-type proteinase and was the introductory step for the further complete degradation of the enzyme. In addition, a coenriched 50-kDa protein, identified as NADPH-specific glutamate dehydrogenase, significantly decreased the stability of the D-amino acid oxidase activity. Treatment of apo-D-amino acid oxidase from T. variabilis with monobromobimane resulted in a significantly increased fluorescence of two peptides, neither of which contained any cysteine residue. Thus, an involvement of cysteine residues in binding the FAD coenzyme should be excluded.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...