Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (10)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 29 (1995), S. 528-536 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 29 (1995), S. 1674-1680 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 29 (1995), S. 1860-1866 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Using a relative rate method, rate constants for the gas-phase reactions of the NO3 radical with methacrolein and methyl vinyl ketone were determined to be (4.4 ± 1.7) × 10-15 cm3 molecule-1 s-1 and 〈6 × 10-16 cm3 molecule-1 s-1, respectively, at 296 ± 2 K. The molar formation yields of methacrolein and methyl vinyl ketone from the gas-phase reaction of the NO3 radical with isoprene at 296 ± 2 K and atmospheric pressure of air were measured to be 0.035 ± 0.014 each. The tropospheric implications of these kinetic and product data are discussed, and it is concluded that the nighttime NO3 radical reactions with methacrolein and methyl vinyl ketone are not important. However, during nighttime the formation of methacrolein and methyl vinyl ketone from the reaction of isoprene with the NO3 radical may dominate over their formation from the O3 reaction with isoprene. Atmospheric pressure ionization tandem mass spectrometry (API-MS/MS) was used to investigate the products of the reactions of the NO3 radical with isoprene and isoprene-d8, and C5-nitrooxycarbonyl(s) (e.g., O2NOCH2C(CH3) (DOUBLEBOND) CHCHO), C5-hydroxynitrate(s) (e.g., O2NOCH2C(CH3)(DOUBLEBOND) CHCH2OH), C5-nitrooxyhydroperoxide(s) (e.g., O2NOCH2C(CH3)(DOUBLEBOND) CHCH2OOH), and C5-hydroxycarbonyl(s) (e.g., HOCH2CH(DOUBLEBOND) C(CH3)CHO) and their deuterated analogs were observed from these reactions. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 471-474 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Using a relative rate method, rate constants have been measured for the gas-phase reactions of the OH radical with the dibasic esters dimethyl succinate [CH3OC(O)CH2CH2C(O)OCH3], dimethyl glutarate [CH3OC(O)CH2CH2CH2C(O)OCH3], and dimethyl adipate [CH3OC(O)CH2CH2CH2CH2C(O)OCH3] at 298±3 K. The rate constants obtained were (in units of 10-12 cm3 molecule-1 s-1): dimethyl succinate, 1.4±0.6; dimethyl glutarate, 3.3±1.1; and dimethyl adipate, 8.4±2.5, where the indicated errors include the estimated overall uncertainty of ±25% in the rate constant for cyclohexane, the reference compound. The calculated tropospheric lifetimes of these dibasic esters due to gas-phase reaction with the OH radical range from 1.4 days for dimethyl adipate to 8.3 days for dimethyl succinate for a 24 h average OH radical concentration of 1.0×106 molecule cm-3. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 471-474, 1998
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 533-540 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Using a relative rate method, rate constants have been measured for the gas-phase reactions of the OH radical with 1-hexanol, 1-methoxy-2-propanol, 2-butoxyethanol, 1,2-ethanediol, and 1,2-propanediol at 296±2 K, of (in units of 10-12 cm3 molecule-1 s-1): 15.8±3.5; 20.9±3.1; 29.4±4.3; 14.7±2.6; and 21.5±4.0, respectively, where the error limits include the estimated overall uncertainties in the rate constants for the reference compounds. These OH radical reaction rate constants are higher than certain of the literature values, by up to a factor of 2. Rate constants were also measured for the reactions of 1-methoxy-2-propanol and 2-butoxyethanol with NO3 radicals and O3, with respective NO3 radical and O3 reaction rate constants (in cm3 molecule-1 s-1 units) of: 1-methoxy-2-propanol, (1.7±0.7)×10-15, and 〈1.1×10-19; and 2-butoxyethanol, (3.0±1.2)×10-15, and 〈1.1×10-19. The dominant tropospheric loss process for the alcohols, glycols, and glycol ethers studied here is calculated to be by reaction with the OH radical, with lifetimes of 0.4-0.8 day for a 24 h average OH radical concentration of 1.0×106 molecule cm-3. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 533-540, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 27 (1995), S. 261-275 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas-phase reactions of the OH radical with 4-methyl-2-pentanone and 2,6-dimethyl-4-heptanone have been investigated in the presence of NOx. Acetone and 2-methylpropanal were identified and qualified as products of both reactions. The acetone yield from 2,6-dimethyl-4-heptanone increased after addition of NO to reacted mixtures, indicating that acetone is formed through the intermediary of an acyl radical. The acetone and 2-methylopropanal formation yields were determined to be 0.78 ± 0.06 and 0.071 ± 0.011, respectively, from 4-methyl-2-pentanone and 0.68 ± 0.11 and 0.385 ± 0.034, respectively, from 2,6-dimethyl-4-heptanone. The possible reaction mechanisms are discussed and compared with these product data, and it is concluded that the experimental data provide direct evidence for isomerization of the (CH3)2CHCH2C(O)CH2C(O) (CH3)2 alkoxy radical formed from 2,6-dimethyl-4-heptanone. However, the isomerization rates of the alkoxy radicals formed from the ketones depend on whether the H-atom abstracted is on a carbon atom α or β to the 〉C=O group, with H-atom abstraction from C—H bonds on the β carbon atoms being significantly faster than from C—H bonds on the α carbon atoms. © 1995 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rate constants for the gas-phase reactions of the four oxygenated biogenic organic compounds cis-3-hexen-1-ol, cis-3-hexenylacetate, trans-2-hexenal, and linalool with OH radicals, NO3 radicals, and O3 have been determined at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained were (in cm3 molecule-1 s-1 units): cis-3-hexen-1-ol: (1.08 ± 0.22) × 10-10 for reaction with the OH radical; (2.72 ± 0.83) × 10-13 for reaction with the NO3 radical; and (6.4 ± 1.7) × 10-17 for reaction with O3; cis-3-hexenylacetate: (7.84 ± 1.64) × 10-11 for reaction with the OH radical; (2.46 ± 0.75) × 10-13 for reaction with the NO3 radical; and (5.4 ± 1.4) × 10-17 for reaction with O3; trans-2-hexenal: (4.41 ± 0.94) × 10-11 for reaction with the OH radical; (1.21 ± 0.44) × 10-14 for reaction with the NO3 radical; and (2.0 ± 1.0) × 10-18 for reaction with O3; and linalool: (1.59 ± 0.40) × 10-10 for reaction with the OH radical; (1.12 ± 0.40) × 10-11 for reaction with the NO3 radical; and (4.3 ± 1.6) × 10-16 for reaction with O3. Combining these rate constants with estimated ambient tropospheric concentrations of OH radicals, NO3 radicals, and O3 results in calculated tropospheric lifetimes of these oxygenated organic compounds of a few hours. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 577-587 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The products of the gas-phase reaction of the OH radical with 3-methyl-1-butene in the presence of NO have been investigated at room temperature and 740 torr total pressure of air by gas chromatography with flame ionization detection, in situ Fourier transform infrared absorption spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry. The products identified and quantified by GC-FID and in situ FT-IR absorption spectroscopy were HCHO, 2-methylpropanal, acetone, glycolaldehyde, and methacrolein, with formation yields of 0.70±0.06, 0.58±0.08, 0.17±0.02, 0.18±0.03, and 0.033±0.007, respectively. In addition, IR absorption bands due to organic nitrates were observed, consistent with API-MS observations of product ion peaks attributed to the β-hydroxynitrates (CH3)2CHCH(ONO2)CH2OH and/or (CH3)2CHCH(OH)CH2ONO2 formed from the reactions of the corresponding β-hydroxyalkyl peroxy radicals with NO. A formation yield of ca. 0.15 for these nitrates was estimated using IR absorption band intensities for known organic nitrates. These products account for essentially all of the reacted 3-methyl-1-butene. Analysis of the potential reaction pathways involved shows that H-atom abstraction from the allylic C(SINGLEBOND)H bond in 3-methyl-1-butene is a minor pathway which accounts for 5-10% of the overall OH radical reaction. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 577-587, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 27 (1995), S. 613-622 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rate constants for the gas-phase reactions of the Cl atom with a series of alkanes have been determined at 296 ± 2 K using a relative rate method. Using a rate constant for the Cl atom reaction with n-butane of 1.94 × 10-10 cm3 molecule-1 s-1, the rate constants obtained (in units of 10-11 cm3 molecule-1 s-1) were: 2-methylpentane, 25.0 ± 0.8; 3-methylpentane, 24.8 ± 0.6; cyclohexane, 30.8 ± 1.2; cyclohexane-d12, 25.6 ± 0.8; 2,4-dimethylpentane, 25.6 ± 1.2; 2,2,3-trimethylbutane, 17.9 ± 0.7; methylcyclohexane, 34.7 ± 1.2; n-octane, 40.5 ± 1.2; 2,2,4-trimethylpentane, 23.1 ± 0.8; 2,2,3,3-tetramethylbutane, 15.6 ± 0.9; n-nonane, 42.9 ± 1.2; n-decane, 48.7 ± 1.8; and cis-bicyclo[4.4.0]decane, 43.1 ± 0.8, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the n-butane rate constant. These data have been combined with rate constants obtained previously for ten C2—C7 alkanes and this entire data set has been used to develop an estimation method allowing the room temperature rate constants for the reactions of the Cl atom with alkanes to be calculated. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...