Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: NMDA receptors mediate several important functions in the CNS; however, little is known about the pharmacology, biochemistry, and function of distinct NMDA receptor subtypes in brain tissue. To facilitate the study of native NMDA receptor subpopulations, we have determined the radioligand binding properties of [3H]homoquinolinate, a potential subtype-selective ligand. Using quantitative receptor autoradiography, NMDA-specific [3H]homoquinolinate binding selectively labeled brain regions expressing NR2B mRNA (layers I–III of cerebral cortex, striatum, hippocampus, and septum). NMDA-specific [3H]homoquinolinate binding was low in brain regions that express NR2C and NR2D mRNA (cerebellar granular cell layer, NR2C; glomerular layer of olfactory bulb, NR2C/NR2D; and midline thalamic nuclei, NR2D). In forebrain, the pattern of NMDA-specific [3H]homoquinolinate binding paralleled NR2B and not NR2A distribution. In addition to NMDA-displaceable binding, there was a subpopulation of [3H]homoquinolinate binding sites in the forebrain, cerebellum, and choroid plexus that was not displaced by NMDA or l-glutamate. In contrast, we found that the derivative of homoquinolinate, 2-carboxy-3-carboxymethylquinoline, markedly inhibited the NMDA-insensitive binding of [3H]homoquinolinate without inhibiting the NMDA-sensitive population. [3H]Homoquinolinate may be useful for selectively characterizing NR2B-containing NMDA receptors in a preparation containing multiple receptor subtypes and for characterizing a novel binding site of unknown function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 156 (1995), S. 315-335 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Various methods are explored for obtaining regularized solutions of the severely ill-posed Laplace inversion problem involved in deriving plasma temperature (T) structure (differential emission measureξ(T)) from bremsstrahlung spectra. Inversions of simulated data show that zero-order regularisation (Tikhonov regularisation inL 2 space) is very unsatisfactory even with weighting, while first-order regularisation (Tikhonov regularisation in Sobolev space) yields reasonable results. The method is applied to a high-resolution hard X-ray flare spectrum observed by Lin and Schwartz (1987) and yields a positive solution forξ(T) showing that a purely thermal interpretation is possible for that event. The form ofξ(T) found has two broad features: one peaking at around 107 K and falling off steeply toward 2 × 108 K; a second spread around a peak near 4.5 × 108 K. The interpretation of suchξ(T) in terms of plasma heating and conductive flux is discussed in terms of plasma heat fluxes and heating rates. For 1-D geometry, the distribution of the plasma heating rateH(T) per unit volume is inferred fromξ(T) in the limits of classical diffusive conduction and of saturated heat flux, the former being relevant atT below around 5 × 107 K and the latter at much higherT. We find there exists a maximum inH(T) around 2 × 108 K, a fact which may be important for energy release theories.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...