Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 671-680 
    ISSN: 0006-3592
    Keywords: immobilized enzymes ; Candida rugosa lipase ; organic solvents ; lovastatin ; dielectric constant ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Lipase from Candida rugosa immobilized on a nylon support has been used to synthesize lovastatin, a drug which lowers serum cholesterol levels, by the regioselective acylation of a diol lactone precursor with 2-methylbutyric acid in mixtures of organic solvents. Analogs of lovastatin having a different side chain were also obtained through this method by reacting the diol substrate with different carboxylic acids. The selection of reaction conditions that maximize the initial reaction rate is investigated. Since the diol substrate has very low solubility in non-polar solvents, reaction solvents consisting of mixtures of hexane with a different, more polar cosolvent are considered. For each of the cosolvent mixtures studied, the reaction rate is maximum for an intermediate percentage of cosolvent in hexane. With total concentrations of the diol lactone in the range 6.25-12.5 mM, maximum initial rates correspond approximately to those cosolvent concentrations that permit a complete solubilization of the substrate. At higher cosolvent concentrations, lower rates are obtained. When considering the same dissolved substrate concentration, the reaction rate was found to increase with increasing values of logPmix and decreasing values of the dielectric constant, when varying the composition of a binary solvent mixture. However, when comparing different cosolvents, no general trend with respect to these properties was observed. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56:671-680, 1997.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 445-453 
    ISSN: 0006-3592
    Keywords: immobilized enzymes ; organic solvents ; esterification ; water ; continuous flow reactor ; adsorption modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Experimental and theoretical studies are conducted to understand the dynamic behavior of a continuous-flow fixed-bed reactor in which an esterification is catalyzed by an immobilized enzyme in an organic solvent medium. The experimental system consists of a commercial immobilized lipase preparation known as Lipozyme as the biocatalyst, with propionic acid and isoamyl alcohol (dissolved in hexane) as the reaction substrates. A complex dynamic behavior is observed experimentally as a result of the simultaneous occurrence of reaction and adsorption phenomena. Both propionic acid and water are adsorbed by the biocatalyst resulting in lower reaction rates. In addition, an excessive accumulation of water in the reactor leads to a rapid irreversible inactivation of the enzyme. A model based on previously-obtained adsorption isotherms and kinetic expressions, as well as on adsorption rate measurements obtained in this work, is used to predict the concentration and thermodynamic activity of water along the reactor length. The model successfully predicts the dynamic behavior of the reactor and shows that a maximum thermodynamic activity of water occurs at a point at some distance from the reactor entrance. A cation exchange resin in sodium form, packed in the reactor as a selective water adsorbent together with the catalyst particles, is shown to be an effective means for preventing an excessive accumulation of water formed in the reaction. Its use results in longer cycle times and greater productivity. As predicted by the model, the experimental results show that the water adsorbed on the catalyst and on the ion exchange resin can be removed with isoamyl alcohol with no apparent loss in enzyme activity. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 445-453, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 601-605 
    ISSN: 0006-3592
    Keywords: lipase ; enzyme immobilization ; esterification ; fatty acid ; n-hexane ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The esterification of a long-chain fatty acid was conducted using a nylon-immobilized lipase from Candida cylindracea in a nearly anhydrous, nonpolar organic medium, hexane. Butyl laurate was produced from lauric acid and n-butanol at a maximum initial reaction rate of 37 mmol/h. g immobilized enzyme when the substrates were present in equimolar amounts at an initial concentration of 0.5 mol/L. Lower rates were obtained using nonstoichiometric amounts of the substrates. The rate of reaction increased with temperature, reaching a maximum between 35 and 45°C and decreasing sharply at higher temperatures. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 434-444 
    ISSN: 0006-3592
    Keywords: immobilized enzymes ; organic solvents ; esterification ; water ; adsorption ; adsorption modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Reducing the influence of an undesired product in an enzymatic reaction could have a significant impact on the productivity of such systems. Here, we focus on the removal of water formed during an enzymatic esterification in a batch reactor. A commercial immobilized lipase preparation, known as Lipozyme, is used as the biocatalyst and propionic acid and isoamyl alcohol dissolved in hexane are the substrates. In this system, the water formed will partition between the catalyst and the medium. As the more polar reactants are converted into the less polar ester product, the water is partitioned more towards the biocatalyst and the accumulation of water eventually causes lower reaction rates. Addition of a strong-acid cation exchange resin in sodium form is found to control the water accumulation on the biocatalyst without stripping the essential water needed for the enzyme to function and substantial improvements in conversion are achieved. A mathematical model is developed to describe the batch reaction behavior with and without added absorbent, which successfully predicts the behavior of water and its effects. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 434-444, 1998.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...