Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (21)
Material
Years
Year
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Conductivity and ion density of a plasma channel induced by a mildly relativistic electron beam (300 kV, ∼2 kA, 10–50 ns) have been experimentally investigated under various gas pressures. Pressures of filling gas (air) in this experiment ranged from 10 mTorr to 100 mTorr. The net currents of the beam-induced plasma channel were measured by four Rogowski coils located along the propagating region, while the electron beam currents were measured by a Faraday cup. The inductive plasma currents observed at the above pressure regimes have been characterized by magnetic decay time. Plasma-channel conductivity and ion density induced by the beam are measured along the propagating axial positions under various gas pressures. The numerical result of the ion density is also obtained at the charge neutralization time when the ion density is just the same as the electron beam density, and the digitizing experimental data of the beam current Ib(t) and voltage Vd(t) have been used. As expected, in both numerical and experimental results the ion density increases to a peak value of about 3.0×1011 cm−3 and 3.3×1011 cm−3, respectively, at 50 mTorr and slowly decreases for both cases as the gas pressure increases from 50 mTorr to 100 mTorr. Moreover, the results of ion density predicted by the theoretical model developed here are also found to be in remarkably good agreement with experimental and numerical results at pressure regimes from 10 mTorr to 100 mTorr. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Neutron diagnostics are applied to a deuterium plasma mixed with protons in the central cell of the GAMMA 10 tandem mirror [Inutake et al., Phys. Rev. Lett. 55, 939 (1985)]. The deuterium ions are heated with a slow ion cyclotron wave tuned to the fundamental deuterium resonance near the mid-plane of the central cell while the plasma is sustained with the fundamental resonance heating of protons in the minimum-B anchor cells. The measurement is based on in situ calibration to determine the transmission efficiency through machine walls and the counting efficiency of the detection system for neutrons emitted from 252Cf with energy close to that in the deuterium–deuterium (D–D) fusion reaction. The observation shows that the count rate of neutrons increases with diamagnetism, and this relation is accounted for in terms of fusion reaction between deuterium ions with a transverse temperature exceeding 10 keV. Discrepancies among ion temperatures determined with different diagnostics are mostly attributed to insufficient knowledge of the profiles of plasma parameters. The results indicate that the neutron measurement can be added as a powerful diagnostic tool for hot ions if combined with more detailed profile measurements. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: For the purpose of the measurements of temporally and spatially resolved electron temperatures (Te) during a single plasma shot alone, we propose and fabricate a new matrix-type semiconductor x-ray detector. This detector is fabricated using the precise formation of thin dead layers (SiO2) with six different thicknesses (from 10 to 5000 Å) aligned in line on its surface compactly. Each "row" has seven channels for the measurements of plasma x-ray radial profiles so as to make x-ray tomographic reconstructions; namely, the compact-sized matrix detector having six rows and seven columns with a 5×5 mm2 active area for each matrix unit. These various SiO2 layers are proposed to be utilized as ultrathin "x-ray absorption filters" with different thicknesses, which are never obtained as "self-supporting material absorbers" because of their ultrathin properties. This novel idea enables us to analyze x-ray tomography data including in the Te region down to a few tens eV. The simultaneous comparison of each tomographically reconstructed data from each detector row provides the temporal evolution of energy-resolved x-ray or Te profiles using "the absorption method." The first application of this newly developed matrix detector is made to obtain Te profiles in the GAMMA 10 tandem mirror. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Semiconductor ion detectors are developed and characterized for the purpose of the use for high-output and wide-energy-sensitive upgraded ion diagnostics. In particular, the theoretical basis for the simulation of the semiconductor ion-energy response along with its experimental verification using monoenergetic ion beams is investigated. High-output-current semiconductor signals ranging from one to three orders of magnitude larger than those from widely employed commercially available silicon-surface-barrier detectors are attained in the ion-energy region above 0.2 keV. These data are found to be well fitted by the developed simulation results. In order to observe ion signals alone under the complicated condition of the simultaneous incidence of ions, electrons, and x rays, we develop an upgraded electrostatic ion-energy spectrometer, having specific structures with obliquely positioned multiple grids. The combination of the installation of such a low-ion-energy-sensitive semiconductor detector and this novel-structured ion spectrometer provides a new electrostatic large-output and low-energy-sensitive ion spectrometer having no signal disturbances from the other plasma species and giving no perturbations to ambient plasma-confining magnetic fields. Accordingly, this novel compact-sized electrostatic ion spectrometer using a single-channel semiconductor collector provides temporal-evolution data on ion-energy spectra during a single plasma shot alone; therefore, this spectrometer is usefully applicable to the opportunities of the observations of ion parameters in both divertor and hot-core regions. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: For the purpose of plasma-ion-energy analyses in a wide-energy range from a few hundred eV to hundreds of keV, upgraded semiconductor detectors are newly fabricated and characterized using a test-ion-beam line from 0.3 to 12 keV. In particular, the detectable lowest-ion energy is drastically improved at least down to 0.3 keV; this energy is one to two orders-of-magnitude better than those for commercially available Si-surface-barrier diodes employed for previous plasma-ion diagnostics. A signal-to-noise ratio of two to three orders-of-magnitude better than that for usual metal-collector detectors is demonstrated for the compact-sized semiconductor along with the availability of the use under conditions of a good vacuum and a strong-magnetic field. Such characteristics are achieved due to the improving methods of the optimization of the thicknesses of a Si dead layer and a SiO2 layer, as well as the nitrogen-doping technique near the depletion layer along with minimizing impurity concentrations in Si. Such an upgraded capability of an extremely low-energy-ion detection with the low-noise characteristics enlarges research regimes of plasma-ion behavior using semiconductor detectors not only in the divertor regions of tokamaks but in wider spectra of open-field plasma devices including tandem mirrors. An application of the semiconductor ion detector for plasma-ion diagnostics is demonstrated in a specially designed ion-spectrometer structure. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: For the purpose of the developments of wide-energy-range-sensitive x-ray detectors, we have designed and fabricated a new-type multilayer semiconductor x-ray detector. This new-type detector has been characterized using synchrotron radiation from a 2.5-GeV positron storage ring at the Photon Factory of the National Laboratory for High Energy Physics (KEK). This new detector is essentially composed of four layers of commercially available photodiodes. Each photodiode is made from a 300-μm thick, and a 10×10-mm square-shaped wafer. For the common affiliation of these individual photodiodes, the quantum efficiency normalized by the photon energy η/E begins to decrease at 8 keV, and then η/E decreases down to 26% at 20 keV. On the other hand, for our newly designed detector a flat response even in the 10–20-keV energy regime (beam line 15C at the Photon Factory) is observed, and even at 100 keV η/E〈30% is still anticipated. This new x-ray detector has various advantages: (i) A compact, and (ii) outgas-free detector for a high-vacuum use, along with (iii) a high degree of immunity to ambient magnetic fields. Furthermore, (iv) the combination of the x-ray signal outputs from each detector layer provides information on the x-ray emitting electron energies. These properties are quite suitable for the use of the fusion-oriented plasma x-ray diagnostics under intense-magnetic field and high-vacuum conditions so as to interpret wide-band x-ray emitting electron-velocity distribution functions from the x-ray data. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: In the energy range from 1 keV down to a few hundred eV, a newly developed "ultralow-energy measurable'' pure-Ge detector for a pulse-height analysis and a current-mode observation has been characterized using synchrotron radiation monochromatized by a grasshopper monochromator at the Photon Factory of the National Laboratory for High Energy Physics (KEK). X-ray measurements in this low-energy region were previously tried out using several types of "windowless'' Si(Li) detectors. These detectors, however, had trouble, including temporal variations in the quantum efficiencies because of their detector-surface deteriorations due to various impurities in vacuum chambers. Our pure-Ge detector has a 4000-A(ring) thick polymer window metalized by a 1400-A(ring) thick Al supported by a 100-μm apart Si-ribbed structure. However, for this liquid-nitrogen-cooled detector with the special window, its actual energy-response data are not available at this time. Therefore, the investigations of its characteristics are reported particularly for the purpose of the reliable x-ray observations in such a low-energy regime. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A new x-ray spectrometer using the principle of a photoelectron spectroscopy method is developed for the purpose of the observations of plasma-electron temperatures in the range of a hundred of eV. X-ray photoelectron spectroscopy is a widely utilized method for surface-physics analyses; here, we employ a parallel-plate energy analyzer. This new type spectrometer is calibrated using synchrotron radiation from a 2.5 GeV positron storage ring at the Photon Factory (KEK). Theoretical calculations for photoelectron spectra from plasmas with various electron temperatures are carried out using the calibration data. This spectrometer is set up at the central cell of the GAMMA 10 tandem mirror for the measurements of potential-confined electron temperatures. Experimentally observed spectra are compared with the calculated spectra as well as the data from the other x-ray detection method. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 4928-4936 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A novel end-loss ion-energy spectrometer is designed for plasma-ion diagnostics in open-ended plasma-confinement devices. This analyzer significantly upgrades a previous slanted grid end-loss analyzer (SELA) to essentially eliminate secondary-electron current, and to provide a differential-spectrum mode of operation, in addition to the usual integral-spectrum operation of gridded ion-energy analyzers. The upgraded SELA does not perturb the ambient magnetic field due to its electrostatic operation. Either the differential or integral spectra are obtained by a time sweep of grid voltages, collecting the ion current on a single-channel plate. Because the angular alignment of the SELA is not critical, it can be used as a spatially scannable diagnostic of ion-energy distributions and plasma potentials. It is characterized using computer simulations of ion trajectories, monoenergetic ion beams, and end-loss plasma from the world's largest tandem mirror—GAMMA 10. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The x-ray energy responses of silicon semiconductor detectors, including surface-barrier and photodiode-type detectors, have been investigated, using synchrotron radiation from a 2.5 GeV positron storage ring at the Photon Factory (KEK) in order to study the fundamental physics mechanism of the output signals. These studies are essential to obtain the principles of the future designs of plasma x-ray detectors, as well as of their plasma data analyses. The characterization experiments and their physics interpretations were made using (i) a group of fully depleted detectors and (ii) another group of partially depleted detectors characterized by obviously different depletion-layer thicknesses and minority-carrier diffusion lengths, but with the same wafer thickness. Both results are well interpreted by our newly proposed formula for a semiconductor x-ray-detector response. The importance of these investigations for the plasma x-ray diagnostics is highlighted by significant errors for the estimation of plasma-electron temperatures when the commonly utilized conventional theory is employed for the plasma data analyses. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...