Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Seasonal differences in PSII efficiency (Fv/Fm), the conversion state of the xanthophyll cycle (Z + A)/ (V + A + Z), and leaf adenylate status were investigated in Euonymus kiautschovicus. On very cold days in winter, Fv/Fm assessed directly in the field remained low and Z + A high throughout day and night in both sun and shade leaves. Pre-dawn transfer of leaves from subfreezing temperatures in the field to room temperature revealed that recovery (increases in Fv/Fm and conversion of Z + A to violaxanthin) consisted of one, rapid phase in shade leaves, whereas in sun leaves a rapid phase was followed by a slow phase requiring days. The pre-dawn ATP/ADP ratio, as well as that determined at midday, was similar when comparing overwintering leaves with those sampled in the summer, although pre-dawn levels of ATP + ADP were elevated in all leaves during winter relative to summer. After a natural transition to warmer days during the winter, pre-dawn Fv/Fm and Z + A in shade leaves had returned to values typical for summer, whereas in sun leaves Fv/Fm and Z + A levels remained intermediate between the cold day in winter and the summer day. Thus two distinct forms of sustained (Z + A)-dependent energy dissipation were identified based upon their differing characteristics. The form that was sustained on cold days but relaxed rapidly upon warming occurred in all leaves and may result from maintenance of a low lumenal pH responsible for the nocturnal engagement of (Z + A)-dependent thermal dissipation exclusively on very cold days in the winter. The form that was sustained even upon warming and correlated with slow Z + A to violaxanthin conversion occurred only in sun leaves and may represent a sustained engagement of (Z + A)-dependent energy dissipation associated with an altered PSII protein composition. In the latter, warm-sustained form, uncoupler or cycloheximide infiltration had no effect on the slow phase of recovery, but lincomycin infiltration inhibited the slow increase in Fv/Fm and the conversion of Z + A to violaxanthin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Leaves of Stephania japonica and Smilax australis were characterized in situ on the coast of north-eastern New South Wales, Australia, where they were growing naturally in three different light environments: deep shade, in the understory of an open Eucalyptus forest where they received frequent sunflecks of high intensity, and in an exposed site receiving full sunlight. In deep shade the xanthophyll cycle remained epoxidized during the day and the vast majority of absorbed light was utilized for photosynthesis. In the exposed site both deepoxidation and epoxidation of the xanthophyll cycle and changes in the level of xanthophyll-dependent thermal energy dissipation largely tracked the diurnal changes in photon flux density (PFD). In the understory the xanthophyll cycle became largely deepoxidized to zeaxanthin and antheraxanthin upon exposure of the leaves to the first high intensity sunfleck and this high level of deepoxidation was maintained throughout the day both during and between subsequent sunflecks. In contrast, thermal energy dissipation activity, and the efficiency of photosystem II, fluctuated rapidly in response to the changes in incident PFD. These findings suggest a fine level of control over the engagement of zeaxanthin and antheraxanthin in energy dissipation activity, presumably through rapid changes in thylakoid acidification, such that they became rapidly engaged for photoprotection during the sunflecks and rapidly disengaged upon return to low light when continued engagement might limit carbon gain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The influence of the growth photon flux density (PFD) on the size and composition of the carotenoid pool and the size of the reduced ascorbate pool was determined across a light gradient from the forest floor to the canopy and the forest edge of a sub-tropical rainforest in New South Wales, Australia. Nineteen plant species (most collected from multiple sites) representing a broad taxonomic range consistently possessed larger total carotenoid pools when found growing in more exposed sites. There was a significant positive correlation between β-carotene content and growth PFD and a significant negative correlation between α-carotene content and growth PFD. Neoxanthin content exhibited no significant trend while the trend in lutein content varied with mode of expression. The pigments of the xanthophyll cycle (violaxanthin, antheraxanthin and zeaxanthin) exhibited the most pronounced response to growth PFD; they comprised a much greater portion of the total carotenoid pool in high light-acclimated plants. The pool of reduced ascorbate was also several-fold greater in high light-acclimated plants. These acclimatory changes in carotenoid and ascorbate content are consistent with a need for a greater capacity to dissipate excessive absorbed light energy in high light-acclimated plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The influence of low temperature on the operation of the xanthophyll cycle and energy dissipation activity, as ascertained through measurements of chlorophyll fluorescence, was examined in two broad-leaved evergreen species, Vinca minor L. and Euonymus kiautschovicus Loessner. In leaves examined under laboratory conditions, energy dissipation activity developed more slowly at lower leaf temperatures, but the final, steady-state level of such activity was greater at lower temperatures where the rate of energy utilization (through photosynthetic electron transport) was much lower. The rate at which energy dissipation activity increased was similar to that of the de-epoxidation of violaxanthin to antheraxanthin and zea-xanthin at different temperatures. However, leaves in the field examined prior to sunrise on mornings following cold days and nights exhibited a retention of antheraxanthin and zeaxanthin that was associated with sustained decreases in photosystem II efficiency. We therefore suggest that this phenomenon of ‘photoinhibition’ in response to light and cold temperatures during the winter results from sustained photoprotective thermal energy dissipation associated with the xanthophyll cycle. Such retention of the de-epoxidized components of the xanthophyll cycle responded to day-to-day changes in temperature, being greatest on the coldest mornings (when photoprotective energy dissipation might be most required) and less on warmer mornings when photosynthesis could presumably proceed at higher rates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Key words Energy dissipation ; Low-temperature stress ; Malva neglecta ; Pinus ponderosa ; Xanthophyll cycle ; Zeaxanthin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal differences in the efficiency of open PSII units (F v/F m), leaf pigment composition and xanthophyll cycle conversion (Z+A)/(V+A+Z), leaf adenylate status, and photosynthetic capacity were investigated in Pinus ponderosa (Ponderosa pine) and Malva neglecta. In P. ponderosa, acclimation to winter involved a lower photosynthetic capacity, higher carotenoid to chlorophyll ratio, persistent reductions in F v/F m corresponding to persistent retention of Z+A, and no change in foliar ATP/ADP ratios. In contrast, M. neglecta characterized in winter exhibited higher rates of photosynthesis than in summer with no change in carotenoid to chlorophyll ratio, while small nocturnally persistent reductions in F v/F m were observed exclusively on colder winter nights when nocturnal retention of Z+A, and high ATP/ADP ratios were also present. Upon removal of winter-stressed leaves or needles from the field to room temperature, a portion of F v/F m relaxed within 15 min of warming and recovery was completed within 5 h in M. neglecta but required 100 h in P. ponderosa. In M. neglecta, the entire recovery of F v/F m correlated with decreases in the foliar ATP/ADP ratio, while in P. ponderosa this ratio remained unchanged. Possible ATP-dependent forms of sustained (Z+A)-dependent energy dissipation are discussed including a nocturnally retained pH gradient on cold winter nights. The slow recovery in pine involved not only retention of Z+A, but apparently also a persistent engagement of Z+A for energy dissipation via an unidentified mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...