Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
  • 1
    ISSN: 1432-0878
    Keywords: Key words Neurofilament ; Basket cell ; Pinceau ; Golgi apparatus ; Calcium binding protein ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract NCS-1 (neuronal calcium sensor) is a recently characterized member of a highly conserved neuron-specific family of calcium-binding proteins, which also includes frequenin and recoverin. The cellular and subcellular distributions of NCS-1 in the rat nervous system were investigated using light- and electron-microscopic immunohistochemistry. NCS-1 immunoreactivity was localized to neuronal cell bodies and axons throughout the brain and spinal cord but not to glial cells. The most intense labeling was observed in myelinated axons, the axonal ramifications of the basket cell in the cerebellar cortex, and large neurons in the brainstem and pons. These same structures were also characterized by heavy labeling for neurofilament protein, as determined by double-labeling experiments. Most axon terminals were unlabeled or only lightly labeled. The most remarkable subcellular staining occurred in the perikarya where intense labeling was associated with the membranes of the trans saccules of the Golgi apparatus. The widespread distribution of NCS-1 indicates that it may be active in a variety of calcium-dependent neuronal functions, whereas the specific subcellular localization to the Golgi apparatus and neurofilament-rich structures suggests a specialized role in calcium regulated protein trafficking and cytoskeletal interactions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Rat sciatic nerve fibres were demyelinated by injection of lysolecithin and examined at several stages as Schwann cells proliferated, adhered, and initiated remyelination. Immunoperoxidase EM has been used to follow the clustering of Na+ channels that represents an early step in the formation of new nodes of Ranvier. At the peak of demyelination, 1 week postinjection, only isolated sites, suggestive of the original nodes, were labelled. As Schwann cells adhered and extended processes along the axons, regions of axonal Na+ channel immunoreactivity were often found just beyond their leading edges. These channel aggregates were associated only with the axolemma and Na+ channels were not detected on glial membranes. Sites with more than one cluster in close proximity and broadly labelled aggregates between Schwann cells suggested that new nodes of Ranvier formed as neighbouring Na+ channel groups merged. Schwann cells thus seem to play a major role in ion channel distributions in the axolemma. In all of these stages Na+ channel label was found primarily just outside the region of close contact between axon and Schwann cell. This suggests that Schwann cell adherence acts in part to exclude Na+ channels, or that diffusible substances are involved and can act some distance from regions of direct contact.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...