Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words Gd(III) complexes ; Contrast agents ; Proton relaxation enhancement ; Magnetic resonance imaging ; Human serum albumin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The non-covalent interaction between human serum albumin (HSA) and DOTA-like Gd(III) complexes containing hydrophobic benzyloxymethyl (BOM) substituents has been thoroughly investigated by measuring the solvent proton relaxation rates of their aqueous solutions. The binding association constants (K A) to HSA are directly related to the number of hydrophobic substituents present on the surface of the complexes. Furthermore, an estimation of ΔH° and ΔS° has been obtained by the temperature dependence of K A. Assays performed with the competitor probes warfarin and ibuprofen established that the complexes interact with HSA through two nearly equivalent binding sites located in the subdomains IIA and IIIA of the protein. Strong relaxation enhancements, promoted by the formation of slowly tumbling paramagnetic adducts, have been measured at 20 MHz for complexes containing two and three hydrophobic substituents. The macromolecular adduct with the latter species has a relaxivity of 53.2±0.7 mM–1 s–1, which represents the highest value so far reported for a Gd(III) complex. The temperature dependence of the relaxivity for the paramagnetic adducts with HSA indicates long exchange lifetimes for the water molecules dipolarly interacting with the paramagnetic centre. This is likely to be related to the formation, upon hydrophobic interaction of the complexes with HSA, of a clathrate-like, second-coordination-sphere arrangement of water molecules. Besides affecting the dissociative pathway of the coordinated water molecule, this water arrangement may itself significantly contribute to enhancement of the bulk solvent relaxation rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemistry - A European Journal 3 (1997), S. 1499-1504 
    ISSN: 0947-6539
    Keywords: gadolinium ; NMR spectroscopy ; prototropic exchange ; rare earth compounds ; water exchange rate ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The exchange rate of the coordinated water molecule in the neutral complex [Gd(DTPA-BBA)(H2O)] (DTPA-BBA = 1,7-bis[(N-benzylcarbamoyl)methyl]-1,4,7-triazaheptane-1,4,7-triacetate or diethylenetriaminopentaacetate N,N′-bis(benzylamide)) is slower than in the parent complex [Gd(DTPA)(H2O)]2-. From the analysis of the temperature dependence of the solvent 17O NMR transverse relaxation time in an aqueous solution of the paramagnetic complex, a value of 4.5 × 105 s-1 (at 298 K) is obtained for the exchange rate of the coordinated water molecule. This rate constant does not vary in the pH range 7-12. Conversely, over the same pH range and at 298 K and 20 MHz, the longitudinal water proton relaxivity increases from 4.8 to 6.5 s-1 mM-1. The analysis of the dependence of the longitudinal water proton relaxation rate on magnetic field and temperature at pH 7 and pH 12 shows that the increase in relaxivity at basic pH has to be assigned to the contribution of the prototropic exchange at the water molecule in the inner coordination sphere of the metal ion. This exchange process is catalyzed by OH- ions (kP = 1.7 × 109 M-1 s-1 at 298 K) and causes an increase in the observed relaxivity when it occurs at a rate larger than the exchange rate of the entire water molecule. At pH 12 the limiting effect of the slow exchange rate for the coordinated water molecule is removed, and the longitudinal water proton relaxivity measured at this pH then represents the maximum value attainable for this complex.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...