Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 768 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 2978-2980 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Photoinduced structural change in hydrogenated amorphous silicon (a-Si:H) has been studied by a sensitive bending detection method using an optical lever. We observed that a-Si:H films show not only thermal expansion due to a photothermal effect but also residual and persistent expansion after light soaking. The volume change is recovered by thermal annealing at 200 °C. A dehydrogenated sample annealed at 550 °C and a microcrystalline sample, in which photoinduced defects are not created, show little photoinduced expansion. The photoinduced expansion and photoinduced defect density show identical time evolution. These results suggest that the photoinduced expansion is related to the photoinduced defect creation. A quantitative evaluation of the photoinduced expansion indicates that the photoinduced structural change is spread over several molecular volumes around a photocreated defect. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of inherited metabolic disease 21 (1998), S. 59-71 
    ISSN: 1573-2665
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Nitric oxide (NO) is synthesized from arginine by nitric-oxide synthase (NOS), and citrulline that is generated can be recycled to arginine by argininosuccinate synthase (AS) and argininosuccinate lyase (AL). Rats were injected with bacterial lipopolysaccharide (LPS) and expression of the inducible isoform of NOS (iNOS), AS and AL was analysed. In RNA blot analysis, iNOS mRNA was induced by LPS in the lung, heart, liver and spleen, and less strongly in the skeletal muscle and testis. AS and AL mRNAs were induced in the lung and spleen. Kinetic studies showed that iNOS mRNA increased rapidly in both spleen and lung, reached a maximum 2–5 h after the treatment, and decreased thereafter. On the other hand, AS mRNA increased more slowly and reached a maximum in 6–12 h (by about 10-fold in the spleen and 2-fold in the lung). AL mRNA in the spleen and lung increased slowly and remained high upto 24 h. In immunohistochemical analysis, macrophages in the spleen that were negative for iNOS and AS before LPS treatment were strongly positive for both iNOS and AS after this treatment. As iNOS, AS and AL were co-induced in rat tissues and cells, citrulline–arginine recycling seems to be important in NO synthesis under the conditions of stimulation. Arginine is a common substrate of NOS and arginase. Rat peritoneal macrophages were cultured in the presence of LPS and expression of iNOS and liver-type arginase (arginase I) was analysed. mRNAs for iNOS and arginase I were induced by LPS in a dose-dependent manner. iNOS mRNA appeared 2 h after LPS treatment and increased up to a near-maximum at 8–12 h. On the other hand, arginase I mRNA began to increase after 4 h with a lag time and reached a maximum at 12 h. Immunoblot analysis showed that iNOS and arginase I proteins were also induced. Induction of iNOS and arginase I mRNAs were also observed in LPS-injected rats in vivo. Thus, arginase I appears to have an important role in downregulating NO synthesis in murine macrophages by decreasing the availability of arginine. A cDNA for human arginase II, an arginase isozyme, was isolated. A polypeptide of 354 amino acid residues including the putative NH2-terminal presequence for mitochondrial import was predicted. It was 59% identical with arginase I. mRNA for human arginase II was present in the kidney and other tissues but was not detected in the liver. Arginase II mRNA was co-induced with iNOS mRNA in murine macrophage-like RAW 264.7 cells by LPS. This induction was enhanced by dexamethasone and dibutyrul cAMP, and was prevented by interferon-γ. These results indicate that NO synthesis is regulated by arginine-synthesizing and -degrading enzymes in a complicated manner.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...