Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (4)
Material
Years
Year
  • 1
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In the highly alkaline environment of the cement paste of a concrete, a source of silica can potentially react in two ways. In the pozzolanic reaction, it can combine with free lime to generate additional calcium silicate hydrate binding phase. Alternatively, reaction with alkali to form a gel can occur; this gel may swell and degrade the concrete. 29Si magic angle spinning (MAS) and cross-polarization (CP) MAS nuclear magnetic resonance (NMR) studies have been performed to determine the silicate connectivity in some model cement systems; 29Si enrichment was utilized to enable a series of spectra to be acquired in situ from a single sample. The hydrate from pozzolanic reaction of lime with silica was similar to the hydrate formed around silica in blended pozzolanic cements, with a relatively high crystallinity and long silicate chains. In the absence of lime, silica reacted with an alkaline solution to produce a gel having a high degree of cross linking, and a range of silicate mobilities. Tricalcium silicate hydration was found to be accelerated significantly by high levels of alkali (KOH) in solution; the hydrate formed had shorter silicate chains and was more crystalline than that produced by reaction in pure water. Hydration in alkali solution of a model blended cement, comprising a mixture of tricalcium silicate and silica, gave rise to two products, a long chain calcium silicate hydrate (C-S-H) and an alkali silicate of low rigidity. The alkali silicate phase gradually polymerized; at later ages it underwent a phase change, although no crystalline phase appeared to be formed. Silicate exchange took place between the C-S-H and the alkali silicate phase at a slow rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 4793-4802 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The C-S-H gels present in both water- and alkali-activated hardened pastes of white Portland cement/blast-furnace slag blends have been studied by solid-state 29Si magic angle spinning nuclear magnetic resonance (NMR) spectroscopy and analytical transmission electron microscopy (TEM). Structural data are obtained by NMR for the semi-crystalline C-S-H gels in the alkali-activated systems and extended to the nearly amorphous gels in the water-activated systems by peak broadening; unambiguous chemical analyses are determined in the TEM. The following conclusions apply to both the semi-crystalline and nearly amorphous C-S-H gels: (1) aluminium substitutes for silicon at tetrahedral sites; (2) aluminium only substitutes for silicon in the central tetrahedron of pentameric silicate chains; (3) the results strengthen confidence in dreierkette-based models for the structure of C-S-H. Compositional similarities suggest that these conclusions will be true for OPC/slag blends, and possibly also for OPC/pulverized fuel ash blends indicating that the same structural model applies to C-S-H gels in a wide range of hardened cement pastes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The hydration of a mixture of tricalcium silicate and silica has been studied by 29Si solid-state nuclear magnetic resonance, using selective enrichment of the reactants with 29Si in order to follow and compare the behaviour of the silicon nuclei originating from either source. This approach shows for the first time that the silicon atoms from the two components are not equilibrated throughout the hydration products but are preferentially located in distinct species. In particular, from the distinctive spectra observed when the silica only is enriched, it is concluded that the part of the calcium silicate hydrate gel formed which incorporates silicon from this source has a longer chain length and a slightly better-ordered structure than the remainder. The spectra obtained with selective enrichment are interpreted in terms of a model based on a dreierkette chain structure for C-S-H.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 6249-6253 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The effect of carbonation on the microstructure and flexural strength of hardened aluminous cement pastes has been investigated. It is found that pastes containing either C3AH*6 or CAH10 as the major crystalline hydrate phase are readily partially carbonated at a humidity of 72.6%. The carbonation products are calcite, vaterite, which is present as 50 nm crystallites, and hydrous alumina, which is always produced in the form of an amorphous gel. Partial carbonation produces a modest increase in the flexural strength for pastes containing either C3AH6 or CAH10.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...