Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Structural and multidisciplinary optimization 13 (1997), S. 65-67 
    ISSN: 1615-1488
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Throughout the human body hundreds of muscles exert forces to stiffen and move the limbs and torso. During heavy exercise, only a small portion of these muscles fatigue. We report here a new kind of human-powered mechanism which amplifies endurance by altering the distribution of work output between fatiguing and nonfatiguing muscles. During heavy exercise, springs within the mechanism are stretched by muscles which would not fatigue if the exercise were conducted without the mechanism. This stored energy is then used to assist those muscles which typically would fatigue, resulting in an increase in endurance. A mathematical model is used to predict the efficiency with which the body can perform mechanical work at various spring stiffnesses for a particular heavy-exercise activity and mechanism. The model results support the hypothesis that the spring stiffnesses which maximize endurance also maximize the efficiency with which the human body can perform work.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...