Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 743-776 
    ISSN: 0271-2091
    Keywords: computational aerodynamics ; shock capturing ; positive schemes ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A unified theory of non-oscillatory finite volume schemes for both structured and unstructured meshes is developed in two parts. In the first part, a theory of local extremum diminishing (LED) and essentially local extremum diminishing (ELED) schemes is developed for scalar conservation laws. This leads to symmetric and upstream limited positive (SLIP and USLIP) schemes which can be formulated on either structured or unstructured meshes. The second part examines the application of similar ideas to the treatment of systems of conservation laws. An analysis of discrete shock structure leads to conditions on the numerical flux such that stationary discrete shocks can contain a single interior point. The simplest formulation which meets these conditions is a convective upwind and split pressure (CUSP) scheme, in which the coefficient of the pressure differences is fully determined by the coefficient of convective diffusion. Numerical results are presented which confirm the properties of these schemes.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 25 (1997), S. 21-49 
    ISSN: 0271-2091
    Keywords: gas evolution model ; gas-kinetic BGK schemes ; entropy condition ; gas-kinetic Lax-Wendroff flux ; kinetic flux vector splitting ; local extremum diminishing ; advection equations ; non-linear hyperbolic systems ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Gas-kinetic schemes based on the BGK model are proposed as an alternative evolution model which can cure some of the limitations of current Riemann solvers. To analyse the schemes, simple advection equations are reconstructed and solved using the gas-kinetic BGK model. Results for gas-dynamic application are also presented. The final flux function derived in this model is a combination of a gas-kinetic Lax- Wendroff flux of viscous advection equations and kinetic flux vector splitting. These two basic schemes are coupled through a non-linear gas evolution process and it is found that this process always satisfies the entropy condition. Within the framework of the LED (local extremum diminishing) principle that local maxima should not increase and local minima should not decrease in interpolating physical quantities, several standard limiters are adopted to obtain initial interpolations so as to get higher-order BGK schemes. Comparisons for well-known test cases indicate that the gas-kinetic BGK scheme is a promising approach in the design of numerical schemes for hyperbolic conservation laws. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 27 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...