Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 82 (1999), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Al2O3/5-vol%-SiC nanocomposites have been fabricated by using pressureless sintering with MgO and/or Y2O3 sintering aids and post-hot isostatic pressing (HIPing), which circumvents the limitations of hot pressing. Al2O3/SiC nanocomposites that have been doped with 0.1 wt% MgO and 0.1 wt% MgO + 0.1 wt% Y2O3 show an increased sintering density and a homogeneous microstructure, as well as a high fracture strength (1 GPa) after HIPing. In contrast, using Y2O3 as a dopant has a negative impact on the microstructure and the fracture strength. The results suggest that MgO, as a sintering additive, has a key role in improving the densification and controlling the microstructure of Al2O3/SiC nanocomposites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 80 (1997), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Processing effects of wet ball-milling on the microstructure and fracture strength of Al2O3/5 vol% SiC nanocomposites were investigated. Homogeneous microstructure and a high fracture strength of 1200 MPa could be achieved under the milling condition of relatively low wear contents of Al2O3 grinding media, maintaining the homogeneity of the ball-milled powders. The fracture strength decreased with increasing wear content. Degradation of fracture strength was caused by abnormal grain growth related to wear particles from the Al2O3 balls.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 81 (1998), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Crack-tip bridging by particles is considered to be one of the primary strengthening mechanisms of ceramic nanocomposites. Small, brittle particulate inclusions have been shown to cause crack-tip bridging at short distances behind the crack tip. This mechanism leads to modest toughness but a very steep R-curve, and it is the latter that produces the very high fracture strength of the ceramic nanocomposite. Localized high residual stress around the particles (particularly in the case of silicon carbide-alumina material) causes the strengthening mechanism to operate effectively, even at a small volume fraction of 5%. The present study predicts the magnitude of the toughness increase and the extent of R-curve behavior for the nanocomposite.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...