Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (1)
Material
Years
Year
  • 1
    ISSN: 1432-0630
    Keywords: PACS: 07.10.L; 61.46; 78.30.F
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. Cubic boron nitride thin films have been ion-beam-assisted deposited on silicon cantilever structures and subsequently back-etched in order to study the stress evolution and finally the growth mechanisms. After each sputtering step, the film stress, the remaining thickness, and the IR data were examined. In this way, the layered sequence of cBN on top of a hBN base layer, influencing the development of the intrinsic film stress, could be studied in detail. The observed stress distribution can be divided into three regions. First, a non-cubic base layer with a constant stress value is formed, followed by a linear increase in the stress after cBN nucleation as a result of the coalescence of cBN nanocrystals. Finally, the stress reaches a second plateau characteristic of the cBN top layer. In addition, the layered sequence was verified by the evolution of the FTIR spectra. Furthermore, the fraction of the sp2-bonded material of the cBN top layer was determined from the IR data. For various deposition conditions, a linear relationship between the stress of the nanocrystalline cBN top layer and the amount of sp3-bonded material was observed. From this, it can be concluded that stress relaxation occurs at the sp2-bonded grain boundary material. No evidence for stress relaxation after cBN nucleation was found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...