Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (8)
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 3437-3439 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A processing route has been developed to grow bundles of carbon nanotubes on substrates from methane and hydrogen mixtures by microwave plasma-enhanced chemical vapor deposition, catalyzed by iron particles reduced from ferric nitrate. Growth takes place at about 900 °C leading to nanotubes with lengths of more than 20 μm and diameters on the nanometer scale. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 2529-2531 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have recently developed a mass spectroscopy of recoiled ions technique which is suitable for monolayer-specific surface analysis of thin films during growth. We present initial results using this technique to study the effect of different bottom electrode layers on metallic species and oxygen incorporation in the early stages of SrBi2Ta2O3 (SBT) film growth via ion beam-sputter deposition. The work discussed here has been focused on studying the incorporation of Sr, Bi, and Ta during growth of SBT on Pt/Ti/SiO2/Si, Pt/MgO, Ti, and Si substrates. We found that the incorporation of Bi in sputter-deposited SBT films depends critically on the bottom electrode surface composition and the growth temperature. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In situ, real-time studies of layered perovskite SrBi2Ta2O9 (SBT) film growth processes were performed using a time-of-flight ion scattering and recoil spectroscopy (TOF ISARS) technique. These studies revealed two important features related to the synthesis of SBT films via ion-beam sputter-deposition, namely: (a) atomic oxygen originating from a multicomponent SBT target during the sputtering process is incorporated in the growing film more efficiently than molecular oxygen; and (b) the SBT surface appears to be terminated in an incomplete (Bi2O2)2+layer with a top surface of oxygen atoms, which may be responsible for the high resistance to polarization fatigue exhibited by Pt/SBT/Pt capacitors. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 1981-1989 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The transition from microcrystalline to nanocrystalline diamond films grown from Ar/H2/CH4 microwave plasmas has been investigated. Both the cross-section and plan-view micrographs of scanning electron microscopy reveal that the surface morphology, the grain size, and the growth mechanism of the diamond films depend strongly on the ratio of Ar to H2 in the reactant gases. Microcrystalline grain size and columnar growth have been observed from films produced from Ar/H2/CH4 microwave discharges with low concentrations of Ar in the reactant gases. By contrast, the films grown from Ar/H2/CH4 microwave plasmas with a high concentration of Ar in the reactant gases consist of phase pure nanocrystalline diamond, which has been characterized by transmission electron microscopy, selected area electron diffraction, and electron energy loss spectroscopy. X-ray diffraction and Raman spectroscopy reveal that the width of the diffraction peaks and the Raman bands of the as-grown films depends on the ratio of Ar to H2 in the plasmas and are attributed to the transition from micron to nanometer size crystallites. It has been demonstrated that the microstructure of diamond films deposited from Ar/H2/CH4 plasmas can be controlled by varying the ratio of Ar to H2 in the reactant gas. The transition becomes pronounced at an Ar/H2 volume ratio of 4, and the microcrystalline diamond films are totally transformed to nanocrystalline diamond at an Ar/H2 volume ratio of 9. The transition in microstructure is presumably due to a change in growth mechanism from CH3⋅ in high hydrogen content to C2 as a growth species in low hydrogen content plasmas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 540-543 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanocrystalline diamond thin films have been synthesized in an Ar–CH4 microwave discharge, without the addition of molecular hydrogen. X-ray diffraction, transmission electron microscopy, and electron energy loss spectroscopy characterizations show that the films consist of a pure crystalline diamond phase with very small grain sizes ranging from 3 to 20 nm. Atomic force microscopy analysis demonstrates that the surfaces of the nanocrystalline diamond films remain smooth independent of the film thicknesses. Furthermore, the reactant gas pressure, which strongly affects the concentration of C2 dimer in the Ar–CH4 plasma as well as the growth rate of the films, has been found to be a key parameter for the nanocrystalline diamond thin film depositions. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 4546-4550 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanocrystalline diamond films have been synthesized by microwave plasma enhanced chemical vapor deposition using N2/CH4 as the reactant gas without additional H2. The nanocrystalline diamond phase has been identified by x-ray diffraction and transmission electron microscopy analyses. High resolution secondary ion mass spectroscopy has been employed to measure incorporated nitrogen concentrations up to 8×1020 atoms/cm3. Electron field emission measurements give an onset field as low as 3.2 V/μm. The effect of the incorporated nitrogen on the field emission characteristics of the nanocrystalline films is discussed. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 4051-4054 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Cold cathode electron field emission from aragonite CaCO3 whiskers coated with 10-nm-thick gold has been observed. The microstructure of the whiskers grown on a Ni substrate by electrochemical deposition has been examined by scanning electron microscope, energy dispersive x-ray spectrometer, x-ray diffraction spectrometer, and Raman spectroscopy. For a 220 μm anode-cathode gap, emission current densities in excess of ∼2×10−6 A/cm2 are observed for applied voltages of 660 V or greater. Although it is believed that the electric field is locally enhanced by the geometry of the whiskers, the voltage required increases roughly linearly with the anode-cathode spacing, corresponding to a turn-on field of approximately 3 V/μm, and an emission current density of 0.4 mA/cm2 has been obtained for an applied field of 5.5 V/μm. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Core-level photoabsorption has been used to determine the sp2 and sp3 bonding content of nanocrystalline diamond thin films grown using C60 or CH4 precursors. The C(1s) absorption spectra show clear bulk diamond excitonic and sp3 features with little evidence of sp2 bonding, while the Raman spectra measured from these same films are ambiguous and indeterminate. This result can be attributed to the local structure (near-neighbor bonding) sensitivity of core-level photoabsorption that is insensitive to domain size, unlike Raman spectroscopy. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...