Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1600-065X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Summary: The genomic region encompassing the Major Histocompatibility Complex (MHC) contains polymorphic frozen blocks which have developed by local imperfect sequential duplication associated with insertion and deletion (indels), In the alpha block surrounding HLA-A, there are ten duplication units or beads on the 62,1 ancestral haplotype. Each bead contains or contained sequences representing Class 1, PERB11 (MHC Class I chain related (MIC)) and human endogenous retrovirus (HERV) 16, Here we consider explanations for co-occurrence of genomic polymorphism, duplication and HERVs and we ask how these features encode susceptibility to numerous and very diverse diseases. Ancestral haplotypes differ in their copy number and indels in addition to their coding regions. Disease susceptibility could be a function of all of these differences. We propose a model of the evolution of the human MHC. Population-specific integration of retroviral sequences could explain rapid diversification through duplication and differential disease susceptibility. If HERV sequences can be protective, there are exciting prospects for manipulation. In the mean-while, it will be necessary to understand the function of MHC genes such as PEKB11 (MIC) and many others discovered by genomic sequencing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1432
    Keywords: Key words: Polymorphism — Recombination — Ancestral haplotypes — Major histocompatibility complex —Homo sapiens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The major histocompatibility complex (MHC) consists of polymorphic frozen blocks (PFBs) that are linked to form megabase haplotypes. These blocks consist of polymorphic sequences and define regions where recombination appears to be inhibited. We have been able to show, using a highly polymorphic sequence centromeric of HLA-B (within the beta block), that PFBs are conserved and contain specific insertions/deletions and substitutions that are the same for individuals with the same MHC haplotype but that differ between at least most different haplotypes. A sequence comparison between ethnic-specific haplotypes shows that these sequences have remained stable and predate the formation of these haplotypes. To determine whether the same conserved block has been involved in the generation of multiple haplotypes, we compared the block typing profiles of different ethnic specific haplotypes. Block typing profiles have previously been shown to be identical in individuals with the same MHC haplotype but, generally, to differ between different haplotypes. It was found that some PFBs are common to more than one haplotype, implying a common ancestry. Subsequently, haplotypes have been generated by the shuffling and exchange of these PFBs. The regions between these PFBs appear to permit the recombination sites and therefore could be expected to exhibit either low polymorphism or a localized ``hotspot.''
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Key words: HLA-B — TNF — Multicopy gene families
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The major histocompatibility complex (MHC) contains genes which confer susceptibility to numerous diseases and must be important in primate evolution. In some instances, genes have been mapped to the region between human histocompatibility leukocyte antigen (HLA)-B and tumor necrosis factor (TNF) but precise localization has proven difficult especially since this region is subject to insertions, deletions, and duplications. Utilizing computer similarity searches and coding prediction programs, we have identified several potential coding sequences between HLA-B and TNF. Three of these sequences, PERB11.2, PERB15, and PERB18, are similar to members of multicopy gene families that are located in other regions of the MHC. The identification of numerous fragmented and intact retroelements (L1, Alu, LTR, and THE sequences) flanking the PERB11 and PERB15 genes suggests that these retroelements are involved in the duplication process. The evaluation of candidate genes for disease susceptibility within the MHC is complicated by their similarity to other members of multicopy gene families. The determination of sequence differences within and between species provides a strategy with which to investigate the candidate genes between HLA-B and TNF.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1211
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...