Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Ganglioside GT3 is the precursor of c-series gangliosides. It is synthesized by sialylation of GD3 and is expressed in nervous tissue of birds and mammals at early stages of development. In this study we examined the sub-Golgi location of GT3 synthesis and the mechanism of its transport from the site of synthesis to the plasma membrane in chicken embryo retina cells in culture. Neural retina cells from 10-day-old chick embryo were cultured with [3H]galactose in the absence (control cells) or in the presence of 1 µg/ml brefeldin A (BFA). At the end of the labeling period, the fraction of labeled gangliosides transported to the plasma membrane was determined. For this, cells were treated with C. perfringens neuraminidase in conditions to desialylate only those gangliosides that were transported to the plasma membrane and consequently accessible to the enzyme. After neuraminidase treatment of cells, gangliosides were isolated, purified, and the pattern of radioactivity analyzed by HPTLC-fluorography. It was found that BFA blocked the synthesis of complex gangliosides without affecting the synthesis of GM3, GD3, and GT3. Furthermore, in BFA-treated cells, GM3, GD3, and GT3 were protected from the action of added neuraminidase, indicating an intracellular localization and, hence, an inhibition of their transport to the plasma membrane. The results indicate that synthesis of the first intermediates of a-, b-, and c- series gangliosides occurs in a proximal Golgi compartment and that the proximal Golgi-synthesized gangliosides (GM3, GD3, and GT3) use a transport mechanism that is dependent on ADP ribosylation factor and coatomer proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Previous studies from this laboratory have shown that synthesis of GT3, the precursor of c series gangliosides, occurs in proximal Golgi compartments, as has been shown for the synthesis of GM3 and GD3, the precursors of a and b series gangliosides, respectively. In this work we studied whether the synthesis of GM3, GD3, and GT3 occurs in the same or in different compartments of the proximal Golgi. For this, we examined in retina cells (a) the effect of monensin, a sodium ionophore that affects mostly the trans Golgi and the trans Golgi network function, on the metabolic labeling of glycolipids from [3H]Gal by cultured cells from 7- and 10-day chick embryos and (b) the labeling in vitro of endogenous glycolipids of Golgi membrane preparations from 7-day embryos incubated with UDP-[3H]Gal. In (a), 1 µM monensin produced a twofold accumulation of radioactive glucosylceramide and a decrease to ∼50 and 20% of total ganglioside labeling in 7- and 10-day cells, respectively. At both ages, monensin produced a threefold accumulation of radioactive GM3 and an inhibition of 〉90% of GT3, GM1, GD1a, and GT1b synthesis. GD3 synthesis was inhibited ∼30 and 70%, respectively, in 7- and 10-day cells. In (b), 〉80% of the [3H]Gal was incorporated into endogenous glucosylceramide to form radioactive lactosylceramide. About 90% of [3H]Gal-labeled lactosylceramide was converted into GM3, and most of this in turn into GD3 when unlabeled CMP-NeuAc was also present in the incubation system. Under the same conditions, however, 〈5% of labeled GD3 was converted into GT3. Golgi membranes incubated with CMP-[3H]NeuAc incorporated ∼20% of [3H]NeuAc into endogenous GT3, and this percentage was not affected by 1 µM monensin. These results indicate that synthesis of GT3 is carried out in a compartment of the proximal Golgi different from those for lactosylceramide, GM3, and GD3 synthesis. Results from the experiments with monensin point to the cis/medial Golgi as the main compartment for coupled synthesis of lactosylceramide, GM3, and GD3 and to the trans Golgi as the main compartment for synthesis of GT3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 22 (1997), S. 455-461 
    ISSN: 1573-6903
    Keywords: Ganglioside-glycosyltransferases ; Golgi compartments ; retina cells ; ganglioside endogenous acceptors ; ganglioside metabolic relationships
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The relationship among lactosylceramide-(LacCer), GD3- and GM2-synthases and between the two last transferases and their common GM3 acceptor was investigated in intact Golgi membrane from chick embryo neural retina cells at early (8-days) and late (14 days) stages of the embryonic development. [3H]Gal was incorporated into endogenous glucosylceramide by incubation of Golgi membranes with UDP-[3H]Gal. Conversion of the synthesized [3H]Gal-LacCer into GM3, and of the latter into GD3, GM2 and GD2 was examined after a second incubation step with unlabeled CMP-NeuAc and/or UDP-GalNAc. With CMP-NeuAc, most [3H]Gal-LacCer was converted into GM3 in either 8- or 14- day membranes. However, while about 90% of GM3 was converted into GD3 in 8-day membranes, only about 25% followed this route in 14-day membranes. With CMP-NeuAc and UDP-GalNAc, about 90% of GM3 was used for synthesis of GM2 in 14-day membranes, while in 8-day membranes about 80% followed the route to GD3, and a part to GD2. Performing the second incubation step in the presence of increasing detergent concentrations showed that conversion of GM3 to GM2 was inhibited at concentrations lower than those required for inhibition of LacCer to GM3 conversion. Taken together, results indicate that transfer steps leading to synthesis of GM3, GD3, GM2 and GD2 from LacCer are functionally coupled in the Golgi membranes, and that GD3- and GM2-synthases compete in a common compartment for using a fraction of GM3 as substrate. In this competition, the relative activities of the transferases and their relative saturation with the respective donor sugar nucleotides, are important factors influencing conversion of GM3 toward either GD3 or GM2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...