Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 17 (1999), S. 642-649 
    ISSN: 0992-7689
    Keywords: Interplanetary physics (interplanetary magnetic fields; sources of solar wind)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We investigate the inclinations of heliospheric current sheet at two sites in interplanetary space, which are generated from the same solar source. From the data of solar wind magnetic fields observed at Venus (0.72 AU) and Earth (1 AU) during December 1978–May 1982 including the solar maximum of 1981, 54 pairs of candidate sector boundary crossings are picked out, of which 16 pairs are identified as sector boundaries. Of the remainder, 12 pairs are transient structures both at Venus and Earth, and 14 pairs are sector boundaries at one site and have transient structures at the other site. It implies that transient structures were often ejected from the coronal streamer belt around the solar maximum. For the 16 pairs of selected sector boundaries, we determine their normals by using minimum variance analysis. It is found that most of the normal azimuthal angles are distributed between the radial direction and the direction perpendicular to the spiral direction both at Venus and Earth. The normal elevations tend to be smaller than ≈45° with respect to the solar equatorial plane, indicating high inclinations of the heliospheric current sheet, in particular at Earth. The larger scatter in the azimuth and elevation of normals at Venus than at Earth suggests stronger effects of the small-scale structures on the current sheet at 0.72 AU than at 1 AU. When the longitude difference between Venus and Earth is small (〈40° longitudinally), similar or the same inclinations are generally observed, especially for the sector boundaries without small-scale structures. This implies that the heliospheric current sheet inclination tends to be maintained during propagation of the solar wind from 0.72 AU to 1 AU. Detailed case studies reveal that the dynamic nature of helmet streamers causes variations of the sector boundary structure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 127 (1997), S. 473-477 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The population dynamics of zooxanthellae living in the mantle of a giant clam, Tridacna derasa, was studied. The giant clams with shell lengths of 5 to 6 cm which had been reared in the Palau Mariculture Demonstration Center, in the Republic of Palau, were transferred to aquaria on deck of the R.V. “Sohgen-maru” and kept in running sea water at 29 to 30 °C. Two clams were removed from the aquaria, and zooxanthellae in the mantle were isolated every 2 h for 24 h. Numbers of the zooxanthellae in or not in the cell division stage were counted for calculations of the zooxanthellae population in the mantle and their mitotic index (MI). The MI increased after sunset and reached the maximum values of 6.1 to 11.5% at 03:00 to 05:00 hrs. The specific growth rate, μ, estimated from the MI was 0.083 to 0.14 d−1. Five clams were kept in each of 2 Plexiglas containers in the aquarium for collection of the discharged feces every 3 to 4 h. The discharged zooxanthellae in the feces were counted. The zooxanthellae discharged in 24 h were 0.38 to 1.46% of the total zooxanthella population in the mantle, and 2.7 to 16.9% of the newly formed zooxanthella population in a day. Increase of zooxanthella population in the mantle was estimated from clam shell growth rate and from the correlation between zooxanthella population and clam shell size. Daily increase of zooxanthella population in the mantle was estimated to be approximately 7.6 to 19% of the newly formed zooxanthella population. Therefore, the sum of zooxanthellae populations accounting for daily increase in the mantle and discharge in the feces was 11 to 36% of the newly formed population. About 64 to 89% of the newly formed cells were missing; some of these may have been digested by the clam.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthesis by cells of Prochloron sp. freshly isolated from the ascidian host, Lissoclinum patella, collected from shallow waters in Palau, was severely inhibited by ultraviolet (UV) irradiation. No photoinhibition, however, was observed in Prochloron cells isolated from intact colonies after UV irradiation, suggesting some protection by the ascidian host. It was shown that UV protection was brought about by the thick gelatinous tunic covering the whole ascidian colony. Analysis revealed that the surface tunic of L. patella, although transparent to visible light, contains several UV-absorbing substances, identified by high-performance liquid chromatography as mycosporine-like amino acids (MAAs). The predominant MAA identified was shinorine (λmax = 334 nm), followed by mycosporine-glycine (λmax = 310 nm) and a small amount of palythine (λmax = 320 nm). Although isolated Prochloron cells also contained shinorine, on a protein-weight basis it was less than half of that observed in the host tunic. These results suggest that the surface tunic of a L. patella colony, which is transparent to visible light for photosynthesis, also contains UV-absorbing compounds that protect its photoautotrophic symbiont, Prochloron sp., from damage by the intense UV-irradiation that they receive daily in shallow, tropical marine waters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 128 (1997), S. 649-655 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of UV-A and UV-B radiation on photosynthesis of zooxanthellae within the siphonal mantle of the giant clam, Tridacna crocea, and in isolation were studied. While UV-B irradiation (2.4 W m−2, 20 min) completely suppressed photosynthesis of the isolated zooxanthellae, it had little effect on their photosynthetic ability if they were irradiated while within the siphonal mantle of the host tissue. Chemical analysis of the siphonal mantle of T. crocea showed the presence of significant amounts of mycosporine-like amino acids (MAAs), which absorb UV-A and -B light. However, no MAA was detected in the isolated zooxanthellae. MAAs were concentrated in the siphonal mantle and kidney tissues in comparison with other tissues. In the siphonal mantle, MAA concentrations were the highest in the outermost surface layer where most of the zooxanthella cells resided. This indicates that the zooxanthellae are protected from UV radiation by a screen of concentrated MAAs in the host clam. Aside from T. crocea, significant amounts of MAAs were found not only in other zooxanthellate clams, such as T. derasa, Hippopus hippopus, Colculum cardissa and Fragum unedo, but also in a closely related azooxanthellate clam, Vasticardium subrugosum. On the other hand, no MAA was detected in any of the zooxanthellae from these zooxanthellate clams. No MAA was detected in the tissues of a deep-sea bivalve, Calyptogena soyoae. Although MAAs seem to block strong UV radiation in the shallow-water clam, they are probably not essential for the clam's life in the dark. MAAs in shallow-water clams may be derived from food and accumulated in their tissues, especially in the siphonal mantle and kidney.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 133 (1999), S. 665-673 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The giant clam Tridacna crocea harbors in the mantle tissue symbiotic microalgae commonly called zooxanthellae. Isolated zooxanthellae release glycerol into the medium in the presence of mantle tissue homogenate (MH), but it is not clear whether the cells do so in situ. In order to determine the photosynthetic products released by zooxanthellae in the mantle of the giant clam we traced photosynthetic fixation products from 13C- and 14C-bicarbonate both in the clam and in isolated zooxanthellae (IZ) in the presence or absence of MH. After 15 min incubation in the absence of MH the IZ released less than 0.6% of the fixed labeled carbon, mainly as glucose. The major intracellular photosynthates were neutral lipids, which constituted 20 to 40% of the total extractable 14C. In the presence of MH, the IZ released up to 5.6% of the total fixed 14C, mostly as glycerol, and the major intracellular photosynthate was glucose. In an intact clam incubated in sea water containing 14C-bicarbonate, 46 to 80% of the fixed 14C was translocated from the zooxanthellae to the host tissues. Most of the 14C in the hemolymph, in the isolated zooxanthellae and in intact mantle tissue (containing zooxanthellae) was recovered as glucose. No 14C-glycerol was detected in the mantle after 1 to 30 min incubation, and, even after 60 min, far less 14C-glycerol was synthesized than by IZ in the presence of MH. The possibility that in clam tissue glycerol is converted to glucose was examined by tracing the labeled carbon from 14C-glycerol injected into the adductor muscle. After 5 min incubation, no labeled glucose was found in the hemolymph, but after 60 min, some 20% was found as glucose. Thin slices containing zooxanthellae, cut from the surface of the mantle, fixed inorganic carbon supplied as NaH14CO3 in the medium and mainly released 14C-glucose. The addition of MH to the surrounding medium did not affect the release rate or form of release product. When the slices were cut into smaller pieces, however, the ratio of glycerol to glucose in the release product increased. These results indicate that in the presence of MH the metabolism of isolated zooxan- thellae was different from that of zooxanthellae in the mantle. In the presence of MH, isolated zooxanthellae release mostly glycerol, whereas in the mantle they release glucose.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two picophytoplankters,Prochlorococcus marinus andSynechococcus sp., were isolated from the bottom of the euphotic zone (150 m depth) in the western Pacifie Ocean. The concentration ofP. marinus at this depth was more than 104 cells ml−1 while that ofSynechococcus sp. was less than 102 cells ml−1. TheP. marinus isolate has a high divinyl-chlorophylla:b ratio similar to that of the Mediterranean strain, while theSynechococcus sp. isolate is of the phycourobilinrich type. The growth rate ofP. marinus was higher thanSynechococcus sp. when both were cultured under weak blue-green to blue-violet light (ca. 2 μE m−2 s−1). While the chlorophyll-specific absorption spectra showed higher values inSynechococcus sp., the photosynthetic action spectre revealed thatP. marinus was able to use blue-violet light, whereasSynechococcus sp. was able to use blue-green light, more efficiently for photosynthesis. The photosynthetic quantum yield ofP. marinus was higher than that ofSynechococcus sp. at any wavelength between 400 and 700 nm. The calculated in situ photosynthesis rates per Gell volume forP. marinus were estimated to be higher than forSynechococcus sp. at 50 and 150 m depth. These results indicate thatP. marinus photosynthetically surpassesSynechococcus sp. in the blue-light-rieh environment of the oceanic euphotic zone. This may be why the former predominates at depths in temperate to tropical open ocean waters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    European journal of pediatrics 157 (1998), S. 610-611 
    ISSN: 1432-1076
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Nuclear and Particle Science 45 (1995), S. 41-88 
    ISSN: 0163-8998
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 3912-3914 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A model for the leakage current of silicon oxide-silicon nitride-silicon oxide (ONO) dielectrics at low electric fields ((approximately-equal-to)2 MV/cm) was successfully developed. It is proposed that two transition mechanisms occur simultaneously. One is the detrapping of electrons from the silicon dangling bond in amorphous silicon nitride (SiN), which corresponds with the transition of dangling bonds among three possible charge states. The second is the direct tunneling of the detrapped electrons from the SiN to the gate through the thin silicon oxide. Both the location and the energy levels of the defect state are taken into account. The energy level, and the intrinsic time constant of the Si dangling bond and the uniform trap density in SiN, can be obtained by comparing the experimental results of the ONO discharge current with the calculated ones based on the above model. It can be found that the energy levels for negatively charged and neutral Si dangling bonds (E− and E0), with respect to the SiN conduction band, are 1.2 and 2.0 eV, respectively, the intrinsic time constants t− and t0 are 1.0×10−14 and 4.0×10−13 s, respectively, and the uniform trap density is 4.0×1019/cm3. From the energy level difference between E− and E0, we can conclude that the effective correlation energy of the Si dangling bonds in SiN is 0.8 eV, which is consistent with Robertson's results based on a tight binding calculation. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 5993-5999 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Extended x-ray absorption fine structure (EXAFS), Rutherford-backscattering ion channeling, and particle induced x-ray emission channeling (PIXE/C) measurements have been performed in order to investigate compensation centers in Cl doped ZnSeTe. The EXAFS results from Cl doped ZnSeTe suggest that almost all Cl atoms are incorporated into substitutional Se lattice sites, which seems to indicate that Cl atoms themselves are not responsible for the compensation centers. The PIXE/C angular profiles were measured across the 〈100〉, 〈110〉, and 〈111〉 axes for undoped ZnSeTe. Comparing the angular profiles for Zn Kα, Se Kα, and Te Lα x-ray yields, it was found that some portion of the Te atoms (∼1020 cm−3) are located at tetrahedral interstitial sites. From these results, the difficulty of realizing n-type ZnSeTe is considered to be due to the existence of the interstitial Te atoms which act as acceptors. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...