Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Key words: Bone mineral density — Osteoporosis — Parathyroid hormone gene — Polymorphism — Risk factors.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. Association of BST B1 restriction fragment length polymorphism (RFLP) of the parathyroid hormone (PTH) gene with bone mineral density (BMD) was examined in 383 healthy postmenopausal women in Japan who were unrelated. The RFLP was represented as B or b, the capital letter signifying the presence of and the small letter the absence of restriction site for BST B1. The frequency of each genotype—BB, Bb, and bb—was 82.5%, 16.7%, and 0.8%, respectively. When we statistically compared age, years after menopause, body height, and body weight between the BB genotype and the Bb genotype groups, there was no significant difference between the groups. However, the lumbar BMD and the score of BMD adjusted for age and body weight (Z score) were significantly lower in the group of genotype Bb than in the BB: 0.859 ± 0.019 g/cm2 versus 0.925 ± 0.011 (mean ± SE, P= 0.01) and −0.412 ± 0.138 versus 0.067 ± 0.082 (mean ± SE, P= 0.01). In addition, the Z score of total body BMD in the Bb genotype group was lower than that in the BB group. Comparison of serum and urinary biochemical bone metabolic markers suggested that the subjects with Bb genotype might be in a relatively higher state of bone turnover than those with BB genotype. These results suggest that the polymorphism in the PTH gene would be a useful genetic marker for lower BMD and the susceptibility for osteoporosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 63 (1998), S. 306-311 
    ISSN: 1432-0827
    Keywords: Key words: Insulin-like growth factor I gene — Bone mineral density — Osteoporosis — Microsatellite polymorphism — Genetics.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. The polymorphism of insulin-like growth factor-I (IGF-I) gene was examined in Japanese postmenopausal women to analyze the genetic background for osteoporosis. In this study, the dinucleotide (cytosine-adenine; CA) repeat sequence lying upstream of the transcription initiation site of this gene was examined. We named the most frequent allele including (CA) 19 as J allele. There were 6 alleles (J-4 containing 17 CA repeats: (CA)17, [J-2 (CA)18, J (CA)19, J + 2 (CA)20, J + 4 (CA)21, J + 6 (CA)22]) in the Japanese population. The genotype distribution was different from that of Caucasians. There was no different in bone mineral density (BMD) between the group with one or two alleles of each genotype and that without that genotype. When we separate the subjects into three groups having two alleles, one allele, and no alleles, the three subjects who possess the allele ′J-2′ in both strands had low BMD (Z score of L2-4; −1.24 ± 0.56, total body; −0.943 ± 0.59, mean ± SE). On the other hand, sequence of IGF-I gene in this study was different from reported sequence of IGF-I gene; that was 2 base pair (bp) deletion following 3′end of CArepeat (−645adenine/−646guanine). The present study showed that there was no association between the microsatellite polymorphism of IGF-I gene and BMD in Japanese postmenopausal women, but some possibility remains that the microsatellite polymorphism of IGF-I gene is useful to detect a kind of particular osteoporosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...