Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Key words: Collagenase — Tissue plasminogen activator — Spaceflight — Osteoblast — Zero gravity.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. Exposure to zero gravity has been shown to cause a decrease in bone formation. This implicates osteoblasts as the gravity-sensing cell in bone. Osteoblasts also are known to produce neutral proteinases, including collagenase and tissue plasminogen activator (tPA), which are thought to be important in bone development and remodeling. The present study investigated the effects of zero gravity on development of calvariae and their expression of collagenase and tPA. After in utero exposure to zero gravity for 9 days on the NASA STS-70 space shuttle mission, the calvariae of rat pups were examined by immunohistochemistry for the presence and location of these two proteinases. The ages of the pups were from gestational day 20 (G20) to postnatal (PN) day 35. Both collagenase and tPA were found to be present at all ages examined, with the greatest amount of both proteinases present in the PN14 rats. At later ages, high amounts were maintained for tPA but collagenase decreased substantially between ages PN21 to PN35. The location of collagenase was found to be associated with bone-lining cells, osteoblasts, osteocytes, and in the matrix along cement lines. In contrast, tPA was associated with endothelial cells lining the blood vessels entering bone. The presence and developmental expression of these two proteinases appeared to be unaffected by the exposure to zero gravity. The calvarial thickness of the pups was also examined; again the exposure to zero gravity showed little to no effect on the growth of the calvariae. Notably, from G20 to PN14, calvarial thickness increased dramatically, reaching a plateau after this age. It was apparent that elevated collagenase expression correlated with rapid bone growth in the period from G20 to PN14. To conclude, collagenase and tPA are present during the development of rat calvariae. Despite being produced by the same cell in vitro, i.e., the osteoblast, they are located in distinctly different places in bone in vivo. Their presence, developmental expression, and quantity do not seem to be affected by a brief exposure to zero gravity in utero.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0827
    Keywords: Key words: Parathyroid hormone — Phorbol ester — Activator protein-1 — Osteoblasts — Collagenase.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. We have previously shown that in the rat osteoblastic osteosarcoma cell line—UMR 106-01—PTH induces maximal collagenase mRNA levels at 4 hours. Since this response to PTH requires de novo protein synthesis, it may be mediated by the combined temporal expression of members of the activator protein-1 (AP-1) gene family. We have demonstrated that maximal mRNA levels of two of the members of this family, c-fos and c-jun, occur 30 min after stimulation by PTH. Phorbol myristate acetate (PMA) elicits a similar increase in c-fos and c-jun mRNAs, but is unable to stimulate transcription of collagenase in these cells. To investigate further the involvement of the AP-1 gene family, we examined PTH and PMA stimulation of jun-B, jun-D, fos B, and fra-1 mRNAs in UMR 106-01 cells. The mRNA for jun-D was abundant under control conditions and showed no variation in response to PTH (10−8 M). The fos B transcripts were not detected under control conditions, whereas jun-B and fra-1 mRNAs were present at low basal levels. PTH caused an increase in fos B mRNA that reached a maximal 4- to 5-fold plateau between 45 and 60 min. An increase in jun-B mRNA in response to PTH was detectable at 30 min, but reached a maximal 6- to 7-fold increase at 2 hours. After PTH stimulation, the fra-1 transcript showed a 10- to 11-fold peak at 4 hours. PMA (2.6 × 10−7 M) stimulated fos B mRNA to maximal abundance at 1 hour, similar to PTH. In contrast, PMA caused a maximal increase in jun-B mRNA at 30 min and fra-1 mRNA at 2 hours, which was earlier than the response to PTH. To determine whether an increase in jun-B at the same time as c-fos and c-jun would inhibit collagenase gene transcription, we cotransfected an expression vector for jun-B with a rat collagenase promoter-reporter gene construct. This resulted in a decrease in PTH-stimulation of promoter activity. Thus, it appears that the differential temporal stimulation of the AP-1 genes by PTH and PMA, particularly an increase in jun-B at the same time as c-fos and c-jun, explains the difference seen in their ability to induce transcription of collagenase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have previously described a specific, saturable receptor for rat collagenase-3 in the rat osteosarcoma cell line, UMR 106-01. Binding of rat collagenase-3 to this receptor is coupled to the internalization and eventual degradation of the enzyme and correlates with observed extracellular levels of the enzyme. In this study we have shown that decreased binding, internalization, and degradation of 125I-rat collagenase-3 were observed in cells after 24 h of parathyroid hormone treatment; these activities returned to control values after 48 h and were increased substantially (twice control levels) after 96 h of treatment with the hormone. Subcellular fractionation studies to identify the route of uptake and degradation of collagenase-3 localized intracellular accumulation of 125I-rat collagenase-3 initially in Golgi-associated lysosomes and later in secondary lysosomes. Maximal lysosomal accumulation of the radiolabel and stimulation of general lysosomal activity occurred after 72 h of parathyroid hormone treatment. Preventing fusion of endosomes with lysosomes (by temperature shift, colchicine, or monensin) resulted in no internalized 125I-collagenase-3 in either lysosomal fraction. Treatment of UMR cells with the above agents or ammonium chloride decreased excretion of 125I-labeled degradation products of collagenase-3. These experiments demonstrated that degradation of collagenase-3 required receptor-mediated endocytosis and sequential processing by endosomes and lysosomes. Thus, parathyroid hormone regulates the expression and synthesis of collagenase-3 as well as the abundance and functioning of the collagenase-3 receptor and the intracellular degradation of its ligand. The coordinate changes in the secretion of collagenase-3 and expression of the receptor determine the net abundance of the enzyme in the extracellular space. J Cell Physiol 177:563-574, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...