Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 16 (1995), S. 341-359 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A simple non-linear stress resultant four node shell finite element is presented. The underlying shell theory is developed from the three dimensional continuum theory via standard assumptions on the displacement field. A model for thin shells is obtained by approximating terms describing the shell geometry. In this work the rotation of the shell director is parameterized by the two Euler angles, although other approaches can be easily accomodated. A procedure is provided to extend the presented approach by including the through-thickness variable material properties. These may include a general non-linear elastic material with varied degree of orthotropy, which is typical for fibre reinforced composites. Thus a simple and efficient model suitable for analysis of multilayered composite shells is attained. Shell kinematics is consistently linearized, leading to the Newton-Raphson numerical procedure, which preserves quadratic rate of asymptotic convergence. A range of linear and non-linear tests is provided and compared with available solutions to illustrate the approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The dynamic analysis of composite shell structures is carried out by an explicit finite element code employing 4-node one-point quadrature elements. The anisotropic Hoffman yield criterion is adopted to model the laminates. The formulation for stress update using a backward Euler scheme is presented in the plane stress subspace. Several numerical examples are presented. The issue of implementing single-iteration schemes for stress update is also investigated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  The dynamic analysis of composite shell structures is carried out by an explicit finite element code employing 4-node one-point quadrature elements. The anisotropic Hoffman yield criterion is adopted to model the laminates. The formulation for stress update using a backward Euler scheme is presented in the plane stress subspace. Several numerical examples are presented. The issue of implementing single-iteration schemes for stress update is also investigated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 16 (1995), S. 341-359 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  A simple non-linear stress resultant four node shell finite element is presented. The underlying shell theory is developed from the three dimensional continuum theory via standard assumptions on the displacement field. A model for thin shells is obtained by approximating terms describing the shell geometry. In this work the rotation of the shell director is parameterized by the two Euler angles, although other approaches can be easily accomodated. A procedure is provided to extend the presented approach by including the through-thickness variable material properties. These may include a general non-linear elastic material with varied degree of orthotropy, which is typical for fibre reinforced composites. Thus a simple and efficient model suitable for analysis of multilayered composite shells is attained. Shell kinematics is consistently linearized, leading to the Newton-Raphson numerical procedure, which preserves quadratic rate of asymptotic convergence. A range of linear and non-linear tests is provided and compared with available solutions to illustrate the approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Communications in Numerical Methods in Engineering 13 (1997), S. 47-49 
    ISSN: 1069-8299
    Keywords: nonlinear structural analysis ; arc-length algorithm ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: In this paper, we have proved in theory that the sign of the current stiffness matrix provides a correct indicator for determining the sign of the loading parameter in the arc-length algorithm before the first bifurcation point is encountered, but may not be the case thereafter. © 1997 John Wiley & Sons, Ltd.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 39 (1996), S. 1219-1235 
    ISSN: 0029-5981
    Keywords: plasticity ; numerical integration algorithms ; consistent linearization ; finite elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: This paper presents a consistent algorithm, which combines the advantages of the exact time integration of Prandtl-Reuss elastoplastic models and the quadratic asymptotic convergence of Newton-Raphson iteration strategies. The consistent modulus is evaluated by a full linearization of the exact stress update procedure. Numerical tests for a thin wall tube subjected to combined loads of tension and torsion are performed to illustrate the accuracy and efficiency of the consistently linearized exact stress update algorithm described in the paper. For comparison purpose numerical results of the radial return method are also given.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 42 (1998), S. 1441-1462 
    ISSN: 0029-5981
    Keywords: GMRES ; Galerkin multi-grid ; variable preconditioning scheme ; conjugate gradient method ; large-scale elasto-plastic problem ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A combination of both GMRES and multi-grid (MG) methods is presented in this paper for solving large-scale two- and three-dimensional elasto-plastic problems, in which each MG iteration cycle serves as the preconditioning step for the GMRES procedure. A particular multi-grid approach, termed the Galerkin multi-grid scheme, is considered and the main effort is devoted to the implementation aspects of the proposed algorithm. Numerical examples, characterised by large-scale (up to 82145 DOF), strong non-linearity (nearly plastic limit state, necking and localization) and severe ill-conditioned states (presence of loading limit points), and also involving symmetric and unsymmetric as well as SPD and indefinite system matrices, are provided. The numerical results illustrate that the proposed method exhibits a remarkable performance in terms of efficiency and robustness in all circumstances. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 42 (1998), S. 289-311 
    ISSN: 0029-5981
    Keywords: viscoplasticity ; finite strain ; localization ; consistent linearization ; finite elements ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: This work extends a previously developed methodology for computational plasticity at finite strains that is based on the exponential map and logarithmic stretches to the context of isotropic elasto-viscoplastic solids. A particular form of the strain-energy function, given in terms of its principal values is employed. It is noticeable that within the proposed framework, the small strain integration algorithms, and the corresponding consistent tangent operators, automatically extend to the finite strain regime. Central to the effort of this formulation is the derivation of the closed form of a tangent modulus obtained by linearization of incremental non-linear problem. This ensures asymptotically quadratic rates of convergence of the Newton-Raphson procedure in the implicit finite element solution. To illustrate the performance of the presented formulation, several numerical examples, involving failure by strain localization and finite deformations, are given. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...