Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1463
    Keywords: Keywords: Chromogranin ; secretoneurin ; Parkinson's disease ; Alzheimer ; multiple sclerosis.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary. Human cerebrospinal fluid (CSF) contains chromogranin A and B and secretogranin II which represent peptides secreted from neuronal large dense core vesicles. Within these vesicles these precursor peptides are at least partly processed to smaller peptides. We analysed the CSF levels of chromogranins/secretogranin by radioimmunoassay using specific antisera. The degree of their processing was characterized by molecular sieve column chromatography followed by radioimmunoassay. As previously shown secretogranin II is fully processed to smaller peptides including the peptide secretoneurin, whereas processing of chromogranin A was more limited. For chromogranin B we found in this study a high degree of processing comparable to that of secretogranin II. An analysis of CSF from patients with multiple sclerosis, essential tremor, Alzheimer and Parkinson disease, did not reveal any differences in proteolytic processing of chromogranins/secretogranin when compared to control CSF. We conclude that in the four diseases investigated there is no change in the proteolytic processing of the chromogranins/secretogranin within the large dense core vesicles. The absolute levels of chromogranins/secretogranin varied in CSF collected in different hospitals, however their relative ratios were remarkable constant. We suggest to use this ratio as a parameter to standardise CSF levels of other peptides, e.g. neuropeptides. In Parkinson patients the chromogranin A/secretogranin II ratio was significantly increased whereas in Alzheimer patients and those with essential tremor and multiple sclerosis no change of the ratios was observed. Apparently there are only limited changes in the biosynthesis, processing, secretion and CSF clearance of these peptides in pathological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Key words Basal ganglia ; Neuropeptides ; Monoamines ; Amino acids ; Microdialysis ; Chromogranin C ; Secretogranin ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In vivo microdialysis was used to study the effect of secretogranin II-derived peptides on dynorphin B (Dyn B), dopamine, γ-aminobutyric acid (GABA), glutamate and aspartate release in the substantia nigra and neostriatum of halothane-anaesthesized rats. In the substantia nigra, local infusion of secretoneurin (secretogranin II 154–186) (1–50 μM) increased, in a concentration-dependent manner, extracellular aspartate, glutamate, Dyn B, dopamine and GABA levels. The effect was particularly prominent on aspartate and glutamate levels which, following 50 μM of secretoneurin, were increased by 〉20 and 〉10 fold, respectively. However, the effect of secretoneurin on Dyn B release appeared to be more specific, since a significant increase (〉2 fold) was already observed following 1 μM of secretoneurin. In the neostriatum, Dyn B, glutamate, aspartate and GABA levels were also increased by local secretoneurin infusion, but the effect was less prominent than in the substantia nigra. In the substantia nigra, only Dyn B levels were significantly increased following infusion of 10 μM of the secretoneurin-C terminal (secretoneurin-15C), whereas Dyn B and GABA levels were increased by the same concentration of the secretogranin II C terminus (YM). Only glutamate and aspartate levels were increased by local infusion of 10 μM of secretogranin II 133–151 (LF), a peptide adjacent to secretoneurin in the primary amino acid sequence. In the neostriatum, Dyn B and GABA levels were increased by 10 μM of secretoneurin-15C. Dyn B levels were also increased by 10 μM of YM, and glutamate and aspartate levels were increased by 10 μM of both YM and LF. Thus, secretogranin II-derived peptides affect extracellular levels of several putative neurotransmitter systems monitored in the basal ganglia of the rat with in vivo microdialysis. The effect of Dyn B appears to be specific and related to a physiological role of secretoneurin, since (i) it occurs in an area where secretoneurin-immunocytochemistry has been observed, (ii) is exerted at comparatively low concentrations, and (iii) is mimicked by secretoneurin-15C. The increases in excitatory amino acid levels produced by high concentrations of secretoneurin and other secretogranin II-derived peptides reflect, perhaps, a potential neurotoxicity produced by abnormal accumulation of these peptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: Basal ganglia ; Neuropeptides ; Monoamines ; Amino acids ; Microdialysis ; Chromogranin C ; Secretogranin ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In vivo microdialysis was used to study the effect of secretogranin II-derived peptides on dynorphin B (Dyn B), dopamine, γ-aminobutyric acid (GABA), glutamate and aspartate release in the substantia nigra and neostriatum of halothane-anaesthesized rats. In the substantia nigra, local infusion of secretoneurin (secretogranin II 154–186) (1–50 μM) increased, in a concentration-dependent manner, extracellular aspartate, glutamate, Dyn B, dopamine and GABA levels. The effect was particularly prominent on aspartate and glutamate levels which, following 50 μM of secretoneurin, were increased by 〉20 and 〉10 fold, respectively. However, the effect of secretoneurin on Dyn B release appeared to be more specific, since a significant increase (〉2 fold) was already observed following 1 μM of secretoneurin. In the neostriatum, Dyn B, glutamate, aspartate and GABA levels were also increased by local secretoneurin infusion, but the effect was less prominent than in the substantia nigra. In the substantia nigra, only Dyn B levels were significantly increased following infusion of 10 μM of the secretoneurin-C terminal (secretoneurin-15C), whereas Dyn B and GABA levels were increased by the same concentration of the secretogranin II C terminus (YM). Only glutamate and aspartate levels were increased by local infusion of 10 μM of secretogranin II 133-151 (LF), a peptide adjacent to secretoneurin in the primary amino acid sequence. In the neostriatum, Dyn B and GABA levels were increased by 10 μM of secretoneurin-15C. Dyn B levels were also increased by 10 μM of YM, and glutamate and aspartate levels were increased by 10 μM of both YM and LF. Thus, secretogranin 11-derived peptides affect extracellular levels of several putative neurotransmitter systems monitored in the basal ganglia of the rat with in vivo microdialysis. The effect of Dyn B appears to be specific and related to a physiological role of secretoneurin, since (i) it occurs in an area where secretoneurin-immunocytochemistry has been observed, (ii) is exerted at comparatively low concentrations, and (iii) is mimicked by secretoneurin-15C. The increases in excitatory amino acid levels produced by high concentrations of secretoneurin and other secretogranin II-derived peptides reflect, perhaps, a potential neurotoxicity produced by abnormal accumulation of these peptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 286 (1996), S. 249-255 
    ISSN: 1432-0878
    Keywords: Key words: GDNF ; NT-4/5 ; Tachykinin ; Dopamine ; Amphetamine ; PPT-A ; Survival ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. Glial-cell-line-derived neurotrophic factor (GDNF) is a novel trophic factor with potent trophic effects on several neuron populations in the central and peripheral nervous system. In the present study, we have investigated and compared the potential of dopamine and metamphetamine with that of the two striatal neurotrophic factors, viz., GDNF and neurotrophin-(NT)-4/5, to regulate substance P and its preprotachykinin-A mRNA in organotypic striatal slices from postnatal (day 10) rats. Incubation for 2 weeks with 10 ng/ml GDNF significantly increased substance-P-like immunoreactivity determined by radioimmunoassay. Similarly, the corresponding preprotachykinin-A mRNA increased after 1 and 2 weeks of incubation, as analyzed by in situ hybridization. NT-4/5 exhibited similar effects.The dopamine-releasing agent metamphetamine stimulated substance-P-containing neurons in 1-week-old striatal slices, whereas dopamine stimulated substance-P-like immunoreactivity in 1- and 2-week old striatal cultures. The effects of dopamine and GDNF were not additive. We conclude that substance-P-containing medium-sized spiny neurons in the striatum are under both dopaminergic and growth factor control by GDNF and NT-4/5, which are both synthesized in the striatum. This adds a previously unknown role to those that have been established for GDNF in the nigrostriatal system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...