Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1076
    Keywords: Key words Cystic fibrosis ; Resting energy expenditure ; Antibiotic treatment ; TNF-α
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cystic fibrosis (CF) patients often present with malnutrition which may partly be due to increased resting energy expenditure (REE) secondary to inflammation. Both REE and tumour necrosis factor-alpha (TNF-α), as other markers of inflammation, are elevated during respiratory exacerbations and decrease after antibiotic treatment. However, the effect of antibiotic therapy on REE and inflammation in patients without respiratory exacerbation is not known. The aim of our study was to determine the effect of such an elective antibiotic therapy on REE, TNF-α, and other serum markers of inflammation. Twelve CF patients 5F/7M, age 15.9 ± 6.1 years, weight for height ratio 89 ± 8% without clinically obvious exacerbation and treated by intravenous antibiotics were studied. Both before (D0) and after (D14) treatment, pulmonary function tests were performed. REE was measured by indirect calorimetry and blood taken to measure inflammation parameters. Body weight increased by 1.1 kg from D0 to D14 (P 〈 0.001), composed of 0.3 kg fat mass and 0.8 kg fat-free mass (FFM). The forced expiratory volume at 1 s increased from 43 ± 15% of predicted at D0 to 51 ± 15% of predicted at D14 (P 〈 0.01). Mean REE was 41.1 ± 7.6 kcal/kg FFM per day at D0 and did not change significantly at D14 (40.6 ± 8.5 kcal/kg FFM per day). Serum markers of inflammation decreased from D0 to D14: C-reactive protein 17 ± 17 mg/l to 4 ± 7 mg/l (P 〈 0.05), elastase 62 ± 29 μg/l to 45 ± 18 μg/l (P 〈 0.02), orosomucoid acid 1.25 ± 0.11 g/l to 0.80 ± 0.15 g/l (P 〈 0.001), and TNF-α 37 ± 14 pg/ml to 29 ± 6 pg/ml (P = 0.05). Individual values showed a correlation between changes in REE and in TNF-α (P 〈 0.02). Conclusion The contribution of inflammation to energy expenditure is possible but appears to be minimal in cystic fibrosis patients treated by antibiotics on a regular basis in the absence of clinically obvious exacerbation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of pediatrics 156 (1997), S. 376-381 
    ISSN: 1432-1076
    Keywords: Key words Resting metabolic rate  ;  Fat-free mass  ;   Fat mass  ;  Childhood obesity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract During puberty fat-free mass (FFM) and fat mass (FM) change quickly and these changes are influenced by sex and obesity. Since it is not completely known how these changes affect resting metabolic rate (RMR), the aim of the present study was to investigate the effect of body composition, age, sex and pubertal development of postabsorptive RMR in 9.5- to 16.5-year-old obese and non-obese children. Postabsorptive RMR was measured in a sample of 371 pre- and postpubertal children comprising 193 males (116 non-obese and 77 obese) and 178 females (119 non-obese and 59 obese). RMR was assessed by indirect calorimetry using a ventilated hood system for 45 min after an overnight fast. Body composition (FFM and FM) was estimated from skinfold measurements. The mean (± SD) RMR was significantly (P 〈 0.001) lower in non-obese (males: 5600 ± 972 kJ/24h; females: 5112 ± 632 kJ/24h) than in obese (males: 7223 ± 1220 kJ/24h; females: 6665 ± 1106 kJ/24h) children. This difference became non-significant when RMR was adjusted for body composition (FFM + FM). However, the difference between the genders still remained significant (control male: 6118 ± 507, control female: 5652 ± 507, P 〈 0.001; obese male: 6256 ± 507, obese female: 5818 ± 507 kJ/24h, P 〈 0.001). The main determinant of RMR was FFM. In the whole cohort, FFM explained 79.8% of the variation in RMR, followed by age, gender and FM adding further 3.8%, 1.1% and 0.8% to the predictability of RMR, respectively. No significant contribution for study group (obese, non-obese), pubertal stage, or fat distribution was found in the regression for RMR. The adjusted value of RMR (for FFM and FM) slightly, but significantly (P 〈 0.01) decreased between the age of 10–16 years, demonstrating the important effect of age on RMR. Conclusions The resting metabolic rate of obese and control children is not different when adjusted for body composition. The main determinant of RMR is the fat-free mass, however, age, gender and fat mass are also significant factors. Pubertal development and fat distribution do not influence RMR independently from the changes in body composition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    European journal of nutrition 36 (1997), S. 255-262 
    ISSN: 1436-6215
    Keywords: Indirect calorimetry ; respiratory gas exchange ; energy expenditure ; substrate utilization ; isotope techniques ; indirekte Kalorimetrie ; respiratorischer Gaswechsel ; Energieumsatz ; Substratverwertung ; Isotopentechnik
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Description / Table of Contents: Zusammenfassung Die indirekte Kalorimetrie, die auf Gaswechselmessungen beruht, ist seit Beginn des Jahrhunderts erfolgreich für die Bestimmung der Wärmeproduktion (Energieumsatz) bei Menschen und Tieren eingesetzt worden. Fehler, die mit dieser klassischen Technik verbunden sind, können von verschiedenen Quellen herrühren: 1) Modell der Berechnung und der Annahmen, 2) verwendete kalorimetrische Faktoren, 3) technische Faktoren, 4) menschliche Faktoren. Die physiologischen und biochemischen Faktoren, die die Interpretation der kalorimetrischen Daten beeinflussen, betreffen eine Änderung der Größe des Bicarbonat- und Harnstoffpools, die Akkumulation oder den Verlust (über den Atem, Urin oder Schweiß) von intermediären Metaboliten (Glukoneogenese, Ketogenese). Seit neuerer Zeit sind respiratorische Gaswechseldaten verwendet worden, um Subtratverwertungsraten in verschiedenen physiologischen und metabolischen Situationen (Fastenzustand, postprandialer Zustand etc.) zu bestimmen. Es sollte angemerkt werden, daß die indirekte Kalorimetrie einen Index für die ‘overall substrate disappearance rates’ liefert. In unkorrekter Weise wird dieser Index gleichgesetzt mit den Substrat' oxidations'-Raten. Bedauerlicherweise existitiert kein geeigneter ‘goldener’ Standard, um die Ganzkörper-Substrat' oxidations'-Raten zu validieren. Im Gegensatz dazu kann die mittels indirekter Kalorimetrie gemessene Wärmeproduktion durch die direkte Kalorimetrie unter exakten thermischen Gleichgewichtsbedingungen validiert werden. Tracertechniken, die stabile (oder radioaktive) Isotope verwenden, stellen einen unabhängigen Weg zur Bestimmung von Substratverwertungs-Raten dar. Wenn der Kohlenhydratstoffwechsel mit beiden Methoden gemessen wird, liefert die indirekte Kalorimetrie im allgemeinen Glukose“oxidations”-Raten, die mit den Tracerergebnissen übereinstimmen. Voraussetzung ist jedoch, daß bestimmte Stoffwechselprozesse (z. B. Gluconeogenese und Lipogenese) minimal sind oder/und die respiratorischen Quotienten nicht am äußersten Ende des physiologischen Bereichs liegen. Es wird jedoch angenommen, daß die Tracertechniken die wahren Glukoseoxidationsraten unterschätzen, weil die Glykogenolyse des Gewebeglukosespeichers nicht berücksichtigt wird. Ein wesentlicher Vorteil der Isotopentracer-Techniken ist, daß sie (mit bestimmten Annahmen) verschiedene Stoffwechselprozesse (z.B. die Gluconeogenese) auf nichtinvasive Weise quantifizieren können. Schlußfolgernd kann gesagt werden, daß die Isotopentracer-Techniken und die indirekte Kalorimetrie als komplementäre Techniken betrachtet werden sollten. Es sollte beachtet werden, daß die Bestimmung der Substratoxidation mit Hilfe der indirekten Kalorimetrie große Fehler beinhalten kann, insbesondere, wenn ein kurzer Zeitraum betrachtet wird. Der Energieumsatz (Wärmeproduktion) wird mittels der indirekten Kalorimetrie mit einem wesentlich kleineren Fehler bestimmt als die Substratoxidations-Raten.
    Notes: Summary Indirect calorimetry based on respiratory exchange measurement has been successfully used from the beginning of the century to obtain an estimate of heat production (energy expenditure) in human subjects and animals. The errors inherent to this classical technique can stem from various sources: 1) model of calculation and assumptions, 2) calorimetric factors used, 3) technical factors and 4) human factors. The physiological and biochemical factors influencing the interpretation of calorimetric data include a change in the size of the bicarbonate and urea pools and the accumulation or loss (via breath, urine or sweat) of intermediary metabolites (gluconeogenesis, ketogenesis). More recently, respiratory gas exchange data have been used to estimate substrate utilization rates in various physiological and metabolic situations (fasting, postprandial state, etc.). It should be re-called that indirect calorimetry provides an index of overall substratedisappearance rates. This is incorrectly assumed to be equivalent to substrate "oxidation" rates. Unfortunately, there is no adequate golden standard to validate whole body substrate "oxidation" rates, and this contrasts to the "validation" of heat production byindirect calorimetry, through use ofdirect calorimetry under strict thermal equilibrium conditions. Tracer techniques using stable (or radioactive) isotopes, represent an independent way of assessing substrate utilization rates. When carbohydrate metabolism is measured with both techniques, indirect calorimetry generally provides consistent glucose "oxidation" rates as compared to isotopic tracers, but only when certain metabolic processes (such as gluconeogenesis and lipogenesis) are minimal or / and when the respiratory quotients are not at the extreme of the physiological range. However, it is believed that the tracer techniques underestimate true glucose "oxidation" rates due to the failure to account for glycogenolysis in the tissue storing glucose, since this escapes the systemic circulation. A major advantage of isotopic techniques is that they are able to estimate (given certain assumptions) various metabolic processes (such as gluconeogenesis) in a noninvasive way. Furthermore when, in addition to the 3 macronutrients, a fourth substrate is administered (such as ethanol), isotopic quantification of substrate "oxidation" allows one to eliminate the inherent assumptions made by indirect calorimetry. In conclusion, isotopic tracers techniques and indirect calorimetry should be considered as complementary techniques, in particular since the tracer techniques require the measurement of carbon dioxide production obtained by indirect calorimetry. However, it should be kept in mind that the assessment of substrate oxidation by indirect calorimetry may involve large errors in particular over a short period of time. By indirect calorimetry, energy expenditure (heat production) is calculated with substantially less error than substrate oxidation rates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...