Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of elasticity 42 (1996), S. 91-98 
    ISSN: 1573-2681
    Keywords: 73
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract By requiring the constitutive equation for the specific internal energy to be such that energy is balanced for all motions compatible with the internal constraint, we are able to infer the exitence and the direction of the reactive stress as well as the usual stress relation for the active stress. In contrast with previous work along this line, our analysis avoids the Lagrange multiplier formalism, and we need not assume that the internal energy response function is extendable off the constraint manifold.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 991-1020 
    ISSN: 0271-2091
    Keywords: finite element analysis ; design sensitivity analysis ; optimization ; contraction design ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The finite element method and the Newton-Raphson solution algorithm are combined to solve the momentum, mass and energy conservation equations for coupled flow problems. Design sensitivities for a generalised response function with respect to design parameters which describe shape, material property and load data are evaluated via the direct differentiation method. The efficiently computed sensitivities are verified by comparison with computationally intensive, finite difference sensitivity approximations. The design sensitivities are then used in a numerical optimization algorithm to minimize the pressure drop in flow through contractions. Both laminar and turbulent flows are considered. In the turbulent flow problems the time-averaged momentum and mass conservati on equations are solved using a mixing length turbulence model.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 1259-1285 
    ISSN: 0029-5981
    Keywords: sensitivity analysis ; optimization, FEM ; thermoelastoplasticity ; welding ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A systematic approach for the design of weakly coupled thermoelastoplastic systems is presented. The Newton-Raphson iteration method is used in the solution process so that analytic design sensitivity formulations may be efficiently derived via the direct differentiation technique. The derived formulations are suitable for finite element implementations. Analysis and sensitivity analysis capabilities are combined with numerical optimization to form an optimum design algorithm. To demonstrate the algorithm, we optimally design a weldment with respect to manufacturing and service life aspects.
    Additional Material: 27 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...