Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 11 (1999), S. 173-180 
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract. The Thomas–Fermi model at finite temperature is extended to describe a system of self-gravitating weakly interacting massive fermions in a general-relativistic framework. The existence and properties of the gravitational phase transition in this model are investigated numerically. It is shown that when a nondegenerate gas of weakly interacting massive fermions is cooled below some critical temperature, a condensed phase emerges, consisting of quasidegenerate fermion stars. For fermion masses of 10 to 25 keV, these fermion stars may very well provide an alternative explanation for the supermassive compact dark objects that are observed at galactic centers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 11 (1999), S. 153-161 
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract. A novel technique based on Schwinger's proper time method is applied to the Casimir problem of the M.I.T. bag model. Calculations of the regularized vacuum energies of massless scalar and Dirac spinor fields confined to a static and spherical cavity are presented in a consistent manner. While our results agree partly with previous calculations based on asymptotic methods, the main advantage of our technique is that the numerical errors are under control. Interpreting the bag constant as a vacuum expectation value, we investigate potential cancellations of boundary divergences between the canonical energy and its bag constant counterpart in the fermionic case. It is found that such cancellations do not occur.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...