Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Algorithmica 13 (1995), S. 539-552 
    ISSN: 1432-0541
    Keywords: Assembly planning ; Arrangement computation in the plane ; Separating polyhedra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract The problem of finding sequences of motions for the assembly of a given object consisting of polyhedral parts arises in assembly planning. We describe an algorithm to compute the set of all translations separating two polyhedra withn vertices inO(n4) steps and show that this is optimal. Given an assembly ofk polyhedra with a total ofn vertices, an extension of this algorithm identifies a valid translation and removable subassembly inO(k2n4) steps if one exists. Based on the second algorithm, a polynomial-time method for finding a complete assembly sequence consisting of single translations is derived. An implementation incorporates several changes to achieve better average-case performance; experimental results obtained for simple assemblies are described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The use of probes such as monoclonal and polyclonal antibodies to specific cell wall components, at both the light and electron microscope levels, has demonstrated the diversity in cell wall composition between species, between tissues, between different regions of the cell surface, and even within a single wall. Traditional methods of cell wall analysis have provided valuable information on wall composition and architecture, but, by having to rely on the use of bulk samples, have averaged out this intrinsic heterogeneity. Fourier Transform Infrared (FTIR) microspectroscopy addresses this problem by providing chemical information from an area as small as 10×10 μm of a single cell wall fragment or area of a tissue section that has been imaged with a microscope accessory.We have used FTIR microspectroscopy as a powerful and extremely rapid assay for wall components and putative cross-links in muro. The spectra are sensitive to polymer conformation, and the use of polarisers in the microscope accessory allows the orientation of particular functional groups to be determined, with respect to the long axis of elongating cells. The spectra constitute species and tissue-specific ‘fingerprints’, and the use of classical discriminant analysis may provide the opportunity for correlating spectral features with chemical, architectural or rheological wall properties. Spectral mapping of an area of a specimen allows the morphological features resulting from cell growth and differentiation to be characterised chemically at the single cell level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Algorithmica 21 (1998), S. 377-394 
    ISSN: 1432-0541
    Keywords: Key words. Dynamic algorithms, Graph algorithms, Lookahead algorithms, Graph certificates, Sparsification, Strong connectivity, Transitive closure.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract. Recent work in dynamic graph algorithms has led to efficient algorithms for dynamic undirected graph problems such as connectivity. However, no efficient deterministic algorithms are known for the dynamic versions of fundamental directed graph problems like strong connectivity and transitive closure, as well as some undirected graph problems such as maximum matchings and cuts. We provide some explanation for this lack of success by presenting quadratic lower bounds on the certificate complexity of the seemingly difficult problems, in contrast to the known linear certificate complexity for the problems which have efficient dynamic algorithms. In many applications of dynamic (di)graph problems, a certain form of lookahead is available. Specifically, we consider the problems of assembly planning in robotics and the maintenance of relations in databases. These give rise to dynamic strong connectivity and dynamic transitive closure problems, respectively. We explain why it is reasonable, and indeed natural and desirable, to assume that lookahead is available in these two applications. Exploiting lookahead to circumvent their inherent complexity, we obtain efficient dynamic algorithms for strong connectivity and transitive closure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...