Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 7 (1995), S. 40-43 
    ISSN: 0899-0042
    Keywords: enantioselectivity ; pig liver esterase ; hydrolysis ; oxazepam ; chiral stationary phase HPLC ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A widely utilized pig liver esterase preparation has been found to be derived essentially exclusively from the cytosolic fraction of pig livers. Esterases in cytosol and microsomes prepared from a fresh pig liver hydrolyzed the S- and R-enantiomers of racemic oxazepam 3-acetate (rac-OXA) with specific activity ratios of approximately 2.3:1 and 1:62, respectively. Product formations were analyzed by chiral stationary phase high-performance liquid chromatography. The commercial pig liver esterase preparation showed greater activity toward S-OXA than did the esterases in the cytosolic fraction prepared from fresh pig liver. The results established that (i) esterases contained in microsomes and cytosol of pig liver have opposite enantioselectivity in the hydrolysis of rac-OXA and (ii) the commercial pig liver esterase preparation has a cytosolic origin. © 1995 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 7 (1995), S. 34-39 
    ISSN: 0899-0042
    Keywords: 1,4-benzodiazepines ; oxazepam ; 3-O-methyloxazepam ; 3-O-ethyloxazepam ; stereoselectivity ; racemization ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Kinetics of acid-catalyzed heteronucleophilic substitution and racemization of enantiomeric MeOX in ethanol and enantiomeric EtOX in methanol were studied by quenching reaction products at various times by neutralization. Enantiomeric contents of remaining substrate and reaction product were determined by chiral stationary phase high-performance liquid chromatography. The experimental procedure allowed the determination of the stereoselectivity (i.e., the enantiomeric ratio of a substitution product formed from an enantiomerically pure substrate) involved in the heteronucleophilic substitution reactions. The stereoselectivity was found to vary between 58:42 and 87:13, depending on the acid concentration, substrate, solvent, and temperature. The enantiomeric purity of remaining substrates was identical to that of the starting substrate, indicating that the enantiomeric substrates did not undergo a ring-opening reaction. The results provided additional evidence supporting the mechanism proposed earlier in acid-catalyzed stereoselective heteronucleophilic and homonucleophilic substitutions and the resulting racemization of enantiomeric 3-alkoxy-1,4-benzodiazepines in alcoholic solvents. © 1995 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 7 (1995), S. 365-375 
    ISSN: 0899-0042
    Keywords: oxazepam ; 3-O-alkyloxazepam ; temazepam ; 3-O-alkyltemazepam ; nucleophilic substitution ; racemization ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Oxazepam (OX), 3-O-methyloxazepam, 3-O-ethyloxazepam, temazepam (TMZ), 3-O-methyltemazepam, and 3-O-ethyltemazepam underwent acid-catalyzed nucleophilic substitution reaction (hydrolysis) in an acetonitrile-oxygen-18 water mixture to form either OX or TMZ in which the 3-hydroxyl group was either partially or fully labeled with an oxygen-18 atom. The dependence of the hydrolysis rates on solvent composition, temperature, ionic strength, and in deuterated solvent was studied by reversed-phase high-performance liquid chromatography (HPLC). The rates of racemization of enantiomeric compounds in acidic aqueous solutions were studied by both spectropolarimetry and chiral stationary phase HPLC. In acetonitrile: 2.5 M H2SO4 (4:1, v/v) at 50°C, enantiomers of OX and TMZ underwent racemization at rates ≥40-fold faster than the rates of hydrolysis. Enantiomeric 3-O-alkyl derivatives of OX and TMZ in acidic aqueous solutions did not themselves undergo racemization and it was their hydrolysis products (either OX or TMZ) that underwent racemization. © 1995 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 8 (1996), S. 525-530 
    ISSN: 0899-0042
    Keywords: temazepam ; 3-O-methyltemazepam ; 3-O-ethyltemazepam ; stereoselectivity ; nucleophilic substitution ; racemization ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Enantiomeric 3-O-methyltemazepam and 3-Oethyltemazepam were highly stereoselectively substituted by the 3-methoxy group of methanol in acidic anhydrous methanol and by the 3-ethoxy group of ethanol in acidic anhydrous ethanol, respectively. The stereoselectivity of the homonucleophilic substitution reactions was determined by circular dichroism spectropolarimetry and gas chromatography-mass spectrometry. In anhydrous solutions containing 0.5 M D2SO4 at 50°C, for example, the stereoselectivity was ∼63:1 for enantiomeric 3-O-methyltemazepam in CD3OD and ∼94:1 for enantiomeric 3-O-ethyltemazepam in C2D5OD. The high stereoselectivity at C3 position was primarily due to the presence of a methyl group at N1 position. © 1996 Wiley-Liss, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Chirality 8 (1996), S. 214-223 
    ISSN: 0899-0042
    Keywords: oxazepam ; racemization ; reversed-phase and chiral stationary phase high-performance liquid chromatography ; circular dichroism spectropolarimetry ; mass spectrometry ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Enantiomeric and racemic oxazepam (OX), 3-O-methyloxazepam (MeOX), and 3-O-ethyloxazepam (EtOX) were used to study racemization, heteronucleophilic, and homonucleophilic substitution reactions in anhydrous acidic methanol and ethanol. Kinetics of racemization and nucleophilic substitution reactions in nondeuterated and deuterated solvents were determined by circular dichroism spectropolarimetry, chiral stationary phase high-performance liquid chromatography (HPLC), reversed-phase HPLC, and mass spectrometry. Several reactions occurred when (S)-OX, for example, was dissolved in acidic methanol: (1) (S)-OX itself underwent spontaneous racemization, (2) the 3-hydroxyl group of (S)-OX was stereoselectively substituted by the methoxy group of methanol to form MeOX enriched in (S)-MeOX, (3) the 3-methoxy group of (S)-MeOX was stereoselectively substituted by the methoxy group of methanol to form MeOX enriched in (S)-MeOX, and (4) the 3-methoxy group of (R)-MeOX was stereoselectively substituted by the methoxy group of methanol to form MeOX enriched in (R)-MeOX. Repetitive reactions 3 and 4 eventually resulted in a racemic MeOX. Similar reactions occurred for an enantiomeric OX in acidic ethanol. © 1996 Wiley-Liss, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...