Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1058-8388
    Keywords: Contractile protein genes ; Skeletal muscle ; Regeneration ; Differentiation ; Rodent ; Human ; Genetic program ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The functional diversity of skeletal muscle is largely determined by the combinations of contractile protein isoforms that are expressed in different fibers. Just how the developmental expression of this large array of genes is regulated to give functional phenotypes is thus of great interest. In the present study, we perform a comprehensive analysis of contractile protein isoform mRNA profiles in skeletal muscle systems representing each generation of fiber formed: primary, secondary, and regenerating fibers. We find that in each system examined there is a common pattern of isoform gene expression during early differentiation for 5 of the 6 gene families we have investigated: myosin light chain (MLC)1, MLC2, tropomyosin, troponin (Tn)C, and TnI. We suggest that the common isoform patterns observed together represent a genetic program of skeletal muscle differentiation that is independent of the mature fiber phenotype and is found in all newly formed myotubes. Within each of these contractile protein gene families the program is independent of the isoforms of myosin heavy chain (MHC) expressed. The maintenance of such a program may reflect a specific requirement of the initial differentiation process. © 1993 wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...