Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 899-907 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Pulsed-beam Fourier transform microwave spectroscopy was used to measure a and b dipole transitions for the N2O–H35Cl, N2O–H37Cl, N2O–D35Cl, and 15NNO–H35Cl van der Waals complexes. The observed transition frequencies were fit to determine the spectroscopic constants A–DK, B, C, DJ, DJK, eQqaa(Cl), and eQqbb(Cl). The structure of the complex appears to be a planar asymmetric top with a centers-of-mass separation Rc.m. ≈ 3.51 A(ring). The angle θ between Rc.m. and the HCl axis is approximately 110°. The angle φ between the N2O axis and Rc.m. is approximately 77°. The structure was fit using a weighted least squares fit to B and C isotopic rotational constants with Rc.m., θ, and φ as the adjustable parameters, and this procedure yielded three local minima with standard deviations less than 5 MHz. Principal axis coordinates for the Cl, H, and terminal N atoms in the complex were determined with single isotopic Kraitchman analysis to aid in the selection of the "best'' structure. In a second structural analysis Rc.m. θ, and φ values were determined from the spectroscopic constants B, C, and eQqaa(Cl). The "best fit'' structure parameters for N2O–HCl are Rc.m. =3.512(2) A(ring), θ =110(9)°, and φ = 77(2)°. Ab initio calculations of N2O–HCl structures using gaussian〈cm;〉86 with MP2 yielded three energetically stable equilibrium conformations. One of the bound structures is very similar to the present experimental vibrationally averaged structure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 7305-7313 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Microwave measurements were made on the rotational spectrum of 2-sulpholene using a modified Flygare–Balle pulsed beam Fourier transform spectrometer. Analysis and calculations provided information on the large amplitude ring puckering vibration of this system. Twelve and six rotational transitions were measured for the v=0 and v=1 states of the ring puckering vibration, respectively. The transitions for each vibrational state were fitted to a Watson's A reduced Hamiltonian including terms for quartic distortion yielding for v=0 the values B=2125.96(6), C=1983.28(8), ΔJK=0.664(4), ΔK=−0.34(4) MHz, and for v=1 the values A=3995(26), B=2128.3(1), C=1984.6(1), ΔJK=−0.8(1), ΔK=−32(6) MHz. Subsequently, ab initio calculations were performed at the self-consistent-field (SCF)/3-21G*, MP2/6-31G*, and MP4/6-31G* levels of theory to determine the barrier to inversion. The MP4/6-31G* barrier was ΔE=116 cm−1, and can be considered to be the most accurate barrier value calculated in this study. An ab initio potential energy curve was calculated at the SCF/3-21G* level in terms of a single parameter (ω) describing the large amplitude motion of the ring puckering. Vibration-coordinate dependence of the effective reduced mass associated with this large amplitude motion and the resultant kinetic energy expression was determined. The solutions of a one-dimensional Schrödinger equation solved within this double well potential yield a separation between the v=0 and v=1 large amplitude motion vibrational states of 8 cm−1 when the effective reduced mass was assumed constant, and a separation of 9 cm−1 when the effective reduced mass was expressed as a function of the ω coordinate. The v=0 and v=1 eigenfunctions for the SCF ring puckering potential were found to give vibrationally averaged rotational constants in good agreement with those obtained from the microwave spectrum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of radioanalytical and nuclear chemistry 170 (1993), S. 107-116 
    ISSN: 1588-2780
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Isotopic rules are studied for calculated vibrational frequencies of all possible 7212C/13C isotopomers of the C7 cluster of the C2v symmetry. The isotopomers can undergo 486 isomerizations which are decomposed into 27 subclasses using properties of sums of the squares of the vibrational frequencies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of radioanalytical and nuclear chemistry 170 (1993), S. 373-380 
    ISSN: 1588-2780
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The set of all 51 possible12C/13C isotopomers of a C8 cluster of D2d symmetry has been studied by means of the harmonic vibration analysis based on the force field resulting from the second order Møller-Plesset (MP2) perturbation treatment with the 6-31G* basis set. The isotopomers can undergo 200 isomerizations which can be classified into 5 distinct groups using the properties of sums of the squares of harmonic vibrational frequencies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...