Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 19 (1994), S. 302-309 
    ISSN: 0887-3585
    Keywords: dinuclear copper site ; hemocyanin ; oxygen binding ; allosteric regulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The X-ray structure of an oxygenated hemocyanin molecule, subunit II of Limulus polyphemus hemocyanin, was determined at 2.4 Å resolution and refined to a crystallographic R-factor of 17.1%. The 73-kDa subunit crystallizes with the symmetry of the space group R32 with one subunit per asymmetric unit forming hexamers with 32 point group symmetry. Molecular oxygen is bound to a dinuclear copper center in the protein's second domain, symmetrically between and equidistant from the two copper atoms. The copper-copper distance in oxygenated Limulus hemocyanin is 3.6 ± 0.2 Å, which is surprisingly 1 Å less than that seen previously in deoxygenated Limulus polyphemus subunit II hemocyanin (Hazes et al., Protein Sci. 2:597, 1993). Away from the oxygen binding sites, the tertiary and quaternary structures of oxygenated and deoxygenated Limulus subunit II hemocyanins are quite similar. A major difference in tertiary structures is seen, however, when the Limulus structures are compared with deoxygenated Panulirus interruptus hemocyanin (Volbeda, A., Hol, W. G. J. J. Mol. Biol. 209:249, 1989) where the position of domain 1 is rotated by 8° with respect to domains 2 and 3. We postulate this rotation plays an important role in cooperativity and regulation of oxygen affinity in all arthropod hemocyanins. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...