Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: aluminium ; genetics ; inheritance ; toxicity ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of Al on the growth of plants derived from the F3 generation of a cross between Al tolerant (Waalt) and Al sensitive (Warigal) wheat cultivars, grown in low ionic strength nutrient solutions, were assessed by a number of methods viz; root length and haematoxylin stain after 3 days exposure to Al and plant top and root yields, and root length and visual assessment for Al damage after 4 weeks growth. Of these methods haematoxylin stain (3 days) and visual assessment at 4 weeks identified the same plants as being sensitive or tolerant to Al and clearly segregated the 2 populations. Consequently these 2 methods were used as ‘standard’ techniques to determine the ability of the other methods to distinguish between tolerant and sensitive plants. The ratio of plant top: root yields clearly segregated the 2 populations. The 2 populations could not be clearly distinguished based on plant top or root yields, or on root length either after 3 days or 4 weeks exposure to Al. Within the population of tolerant plants, root length was significantly correlated with root weight (r2=0.86) and top weight (r2=0.71). None of these relationships were significant for the population of sensitive plants. These techniques were applied in a number of separate experiments on the F2 and F3 populations from a Waalt × Warigal cross. The results indicate that Al tolerance in wheat is inherited by a single gene and that this gene has incomplete dominance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: aluminium ; asparagus ; Arabidopsis ; bean ; cereals ; grass ; legume ; Nicotiana ; petunia ; relative tolerance ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The results from many experiments conducted over 5 years to determine the tolerance of 34 plant species (87 cultivars) to aluminium (Al) are summarised. All experiments were conducted in a temperature-controlled glasshouse using a low-ionic-strength solution culture technique. The activity of Al3+ (μM) at which top yields were reduced by 50% (AlRY50) was determined for each cultivar. The species Bromus wildenowii, Cynosurus cristatus, Hordeum vulgare, Triticum aestivum (cvs Warigal, Scout, Sonora-63), Avena byzantina, Arabidopsis thaliana, Lycopersicon esculentum and Nicotiana plumbaginifolia were all very sensitive to Al (AlRY50〈1). The species Poa pratense, Lolium perenne (NZ-derived cultivars), Lotus corniculatus, Avena sativa (cvs West, Carbeen, Camellia and Coolabah), Triticum aestivum (cvs Cardinal and Waalt), Allium cepa and Asparagus officinalis were sensitive to Al (AlRY50 1–2). The pasture grass species Lolium perenne (Australian and European and derived cultivars), Lolium hybridum and Lolium multiflorum, Dactylis glomerata (Apanui and Kara), Phalaris aquatica, Festuca arundinacea and the pasture legumes species Trifolium pratense, Trifolium repens and Trifolium subterraneum were all moderately sensitive to Al (AlRY50 2–5). Other species that were also moderately sensitive included Triticum aestivum (cvs Atlas-66, BH146, and Carazinho), Avena sativa (cvs Swan and Blackbutt), Avena Strigosa, Petunia x and Phaseolus vulgaris (cvs Red Kidney, Black Turtle and Haricot). The most tolerant species (AlRY50〉5) were (in order of increasing tolerance) Phaseolus vulgaris (cvs Tendergreen, The Prince and Yatescrop), Cucurbita maxima, Dactylis glomerata (cv Wana), Paspalum dilatatum, Lotus pedunculatus, Ehrharta calycina, Medicago sativa, Holcus lanatus, Festuca rubra, Phaseolus lunatus and Agrostis tenuis. Agrostis tenuis was at least twice as tolerant as the next most tolerant species (AlRY50〉30 compared to 15.6).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...