Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 4 (1993), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Spread of Excitation in a Myocardial Volume. Introduction: The purpose of this study was to present simulations of excitation wavefronts spreading through a parallelepipedal slab of ventricular tissue measuring 6.5 × 6.5 × 1.0cm. Methods and Results: The slab incorporates the anisotropic properties of the myocardium including the transmural counterclockwise fiber rotation from epicardium to endocardium. Simulations were based on an eikonal model that determines excitation times throughout the ventricular wall, which is represented as an anisotropic bidomain. Excitation was initiated by delivering ectopic stimuli at various intramural depths. We also investigated the effect of a simplified Purkinje network on excitation patterns. Excitation wavefronts in the plane of pacing, parallel to epicardial-endocardial surfaces, were oblong with the major axis approximately oriented along the local fiber direction, with bulges and deformations due to attraction from rotating fibers in adjacent planes. The oblong intersections of the wavefront with planes at increasing distance from pacing plane rotated clockwise or counterclockwise, depending on pacing depth, but wavefront rotation was always less than fiber rotation in the same plane. For all pacing depths, excitation returned toward the plane of pacing. Return occurred in multiple, varying sectors of the slab depending on pacing depth, and was observed as close as 6 mm to the pacing site. Conclusion: Curvature of wavefronts and collision with boundaries of slab markedly affected local velocities. Shape and separation of epicardial isochrones and spatial distribution of epicardial velocities varied as a function of site and depth of pacing. When the Purkinje network was added to the model, epicardial velocities revealed the subendocardial location of the Purkinje-myocardial junctions. Considerable insight into intramural events could be obtained from epicardial isochrones. If validated experimentally, results may be applicable to epicardial isochrones recorded at surgery.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 4 (1993), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Potential Patterns in a 3-D Cardiac Depolarization Model, introduction: We present simulations of extracellular potential patterns elicited by delivering ectopic stimuli to a parallelepipedal slab of ventricular tissue represented as an anisotropic bidomain incorporating epiendocardial fiber rotation. Methods and Results: Simulations were based on an eikonal model that determines wave-front shapes throughout the slab at every time instant during the depolarization phase, coupled with an approximate model of the action potential profile. The endocardial face of the slab was in contact with blood and the composite volume was surrounded by an insulating medium. The effect of a simplified Purkinje network was also studied. Results: (1) For all pacing depths, except endocardial pacing, a central negative area and two potential maxima were observed at QKS onset in all intramural planes parallel to the cpicardium. In all planes, the axis joining the two maxima was approximately aligned with the direction of fibers in the plane of pacing. Endocardial pacing generated a different pattern, but only when blood was present; (2) During later stages of excitation, outflowing currents (from the wavefront toward the resting tissue) were always emitted, at all intramural depths, only from those portions of the wavefront that spread along fibers. At any given instant, the position of the two potential maxima in a series of planes parallel to the epicardium and intersecting the wavefront rotated as a function of depth, following the rotating direction of intramural fibers. Purkinje involvement modified the above patterns. Conclusion: Epicardial and endocardial potential maps provided information on pacing site and depth and on subsequent intramural propagation by reflecting the clockwise or counterclockwise rotation of the deep positivity. Results may be applicable to epicardial and endocardial potential maps recorded at surgery or from endocavitary probes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...