Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bioprocess and biosystems engineering 5 (1990), S. 107-114 
    ISSN: 1432-0797
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Fermentations of Xanthomonas campestris, NRRL B-1459, were carried out in a bubble column fermentor (BCF) and in a stirred tank fermentor (STF) to allow comparison of representative variables measured during the microbial growth and the gum production. The microbial growth phase was described by a logistic rate equation where maximum cell concentration was provided by nitrogenous compounds balance. The average value of the maximum specific growth rate was higher in the bubble column (μ M =0.5 h−1) than in the stirred reactor (μ M =0.4 h−1). The upper values of xanthan yield (Y g-x =0.65 kg xanthan/kg glucose; Y O 2−x xanthan/kg oxygen) and specific production rate (q x =0.26 kg xanthan/kg biomass · h) were measured when the oxygen transfer coefficient was kept up above 80 h−1 in the STF fermentor. In the bubble column the fermentation achieved in the same culture medium lasts two times longer than in the stirred aerated tank; this was attributed to the low value of the oxygen transfer coefficient (K L a =20 h−1) at the beginning of the gum synthesis phase. The results obtained in the stirred tank were the basis to estimate the optimal biomass concentration which enables to achieve a culture in non-limiting oxygen transfer conditions. Nevertheless, the transfer characteristics were more homogeneous in the bubble column than in the stirred tank where dead stagnant zones were observed. This is of primary importance when establishing fermentation kinetics models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Both growth and sporulation increase linearly according to the initial water content of the solid substrate when Penicillium roquefortii is cultivated on buckwheat seeds. This indicates that water is the limiting factor for fungal development since neither carbon nor nitrogen sources were exhausted during these experiments. This feature validates the concept of available water for fungal growth, defined as initial water content of substrate minus its residual water content when vegetative growth stops. An efficient methodology, based on drawing a regression line of mycelium dry weight production as a function of the initial water content of substrate is presented; it allows estimation of both available water and water content of mycelium. Results show that growth stops when the residual water in the substrate is close to 0.52 g H2O/g initial dry matter, corresponding to a water activity (aw) close to 0.96, and that the initial water content in mycelium is near 76%. Thus, both aw and water content of the substrate have to be taken into account during the course of solid-state cultivations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 699-709 
    ISSN: 0006-3592
    Keywords: spores ; Penicillium roquefortii ; bioconversion ; methyl ketone ; germination ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The bioconversion of octanoic acid into 2-heptanone by spores of Penicillium roquefortii is performed using a fed-batch technique with pH control by addition of the liquid substrate itself. The early stage of this process takes place with a high bioconversion rate and high yield. These values then decrease as a result of germination and growth the biocatalyst. An optimization strategy for the process would thus be to improve the characteristics of this first period, i.e., increase its duration and the reaction rate. An increase in duration is evidenced in two cases: (I) under oxygen limitation: and (ii) when the spore content in the medium is less than 107 spores/mL. These conditions give insufficient overall bioconversion rates: better optimization should be achieved without oxygen limitation and with high spore content. Characterization of the first period by material and bioenergetic balances suggests that an increase in the ethanol content of the medium, which acts as an energy source and a permeabilizer, and the use of specific inhibitor of the Krebs cycle, may be a way to further improve the biocatalyst performance and stability. © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 815-827 
    ISSN: 0006-3592
    Keywords: Penicillium roquefortii ; sporulation ; solid substrate ; fermentation ; buckwheat ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: When Pencillium roquefortii is grown on two kinds of buckwheat, exhibiting a low [0.85 g water/g dry matter (DM), buckwheat A] and a high [1.5 g water/g initial dry matter (IDM), buckwheat B] water content, a marked difference in the mode of development of the fungus is observed. Material balances for buckwheat A show that growth does not stop because of nutrient exhaustion. Analysis of water balance shows that active growth proceeds with a permanent limitation by the turgor potential which disappears when the water activity of the substrate is close to 0.96, thus arresting growth. This limitation causes intensive water excretion from the system due to the lowering of the water activity of the substrate. The water content of the mycelium thus decreases from 79% at the beginning of the cultivation to 74% when the growth stops. This is linked to a substantial oxidative metabolism and a high sporulation efficiency, close to 0.85. The spores obtained have a low dry weight and a reduced nitrogen content. In the case of buckwheat B, the active growth is shown to stop because of available mineral nitrogen depletion. No significant decrease in the water activity of the substrate is found during the protein synthesis, and the turgor potential remains high at the end of this period. Culture proceeds with new wall synthesis; the sporulation efficiency remains high and the spores obtained exhibit a high dry weight and a high nitrogen content. The bioenergetic balances show that the P/O ratio varies with the kind of substrate used; its value is close to 1.56 for the low water medium and to 2.21 for the high one. The ATP yield Z is always close to 1, and fungal development occurs with limitations of both anabolism and catabolism on buckwheat B and only of anabolism and catabolism on buckwheat B and only of anabolism on buckwheat A.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 1055-1066 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The conversion of radiant light energy into chemical affinity by microorganisms in photobioreactors is examined. The kinetics of entropy production in the system is theoretically established from entropy and energy balances for the material and photonic phases in the reactor. A negative chemical affinity term compensated for by a radiant energy term at a higher level of energy characterizes photosynthetic organisms. The local volumetric rate of radiant light energy absorbed, which appears in the dissipation function as an irreversible term, is calculated for monodimensional approximations providing analytical solutions and for general tridimensional equations requiring the solution of a new numerical algorithm. Solutions for the bluegreen alga Spirulina platensis cultivated in photoreactors with different geometries and light energy inputs are compared. Thermodynambic efficiency of the photosynthesis is calculated. The highest value of 15% found for low radiant energy absorption rates corresponds to a maximum quantum yield in the reactor.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...