Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (2)
Material
Years
Year
Keywords
  • 1
    ISSN: 1434-601X
    Keywords: 25.70.Gh ; 25.70.Jj ; 25.70.Lm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract For the violent collisions of 27 MeV/nucleon40Ar with Ag, coincidence measurements have been made between heavy residues and intermediate mass fragments (3≦Z≦14) or light charged particles. From the analysis of the correlation between heavy residues (mass and velocity) and intermediate mass fragments, the main characteristics of the dominant mechanisms, fusion and partially damped collisions preceded or accompanied by a preequilibrium emission, are presented. Balances concerning mean values of parallel linear momentum, mass and atomic number, are established and confirm that a complete description of violent collisions was obtained. Then thermalization is discussed, first in terms of excitation energies derived from kinematics between heavy residues and intermediate mass fragments, and secondly in terms of initial temperature estimates derived from light charged particle spectra. Very hot nuclei (T⋍5.7–6.6 MeV) are produced over a large impact parameter range from very central collisions to medium peripheral ones. Various experimental results are compared to predictions obtained with semi-classical calculations (Landau-Vlasov equation). From their good agreement one may conclude that, depending on the impact parameter, thermal equilibrium is achieved within 4–10×10−22 s.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-601X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The dynamics of the two partners produced in dissipative collisions has been experimentally studied for the system40Ar + Ag at 27 MeV per nucleon. Primary masses of the fragments can then be calculated; the excitation energy partition between the two fragments is derived from the number of particles evaporated by each fragment. We found that this division evolves from equipartition to a repartition close to thermal equilibrium in the excitation energy range 300–350 MeV or interaction times 5-10×l0−22 s.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...