Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (6)
Material
Years
Year
Keywords
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pseudomonas aeruginosa employs pili to mediate adherence to epithelial cell surfaces. The pilus adhesin of P. aeruginosa strains PAK and PAO has been shown to bind to the glycolipid asialo-GM1 (Lee et al., 1994 —accompanying article). PAK and PAO pili were examined for their abilities to bind to the synthetic βGalNAc(1–4)βGal (a minimal structural carbohydrate receptor sequence of asialo-GM1 and asialo-GM2 proposed by Krivan et al., 1988a) using solid-phase binding assays. Both pill specifically bound to βGalNAc(1–4)βGal. The binding of βGal-NAc(1–4)βGal-Biotin to the Immobilized PAK and PAO pili was inhibited by corresponding free pili. The receptor binding domain of the PAK pilus resides in the C-terminal disulphide-looped region (residues 128–144) of the pilin structural subunit (Irvin et al., 1989). Biotinylated synthetic peptides corresponding the C-terminal residues 128–144 of P. aeruginosa PAK and PAO pilin molecules were shown to bind to the βGalNAc(1–4)βGal-(bovine serum albumin (BSA)). The binding of biotinylated peptides to βGalNAc-(1–4)βGal-BSA was inhibited by PAK pili, Ac-KCTSDQDEOFIPKGCSK-OH (AcPAK(128–144)ox-OH) and Ac-ACKSTQDPMFTPKGCDN-OH (AcPAO(128–144)ox-OH) peptides. (In these peptides Ac denotes Nα -acetylation of the N-terminus, -OH means a peptide with a free a-carboxyl group at the C-terminus and the‘ox’denotes the oxidation of the sulphhydryl groups of Cys–129 and Cys–142.) Both acetylated peptides were also able to inhibit the binding of βGalNAc(1–4)βGal-biotin to the corresponding BSA-Peptide(128–144)ox-OH conjugates. The βGlcNAc(1–3)βGal(1–4)βGlc-biotin conjugate was unable to specifically bind to either Immobilized PAK and PAO pili or the respective C-termlnal peptides. The data above demonstrated that the P. aeruginosa pili recognize asialo-GM1 receptor analogue and that βGalNAc(1–4)βGal disaccharlde is sufficient for binding. Furthermore, the binding to βGalNAc(1–4)βGal was mediated by residues 128–144 of the pilin subunit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Pili are one of the adhesins of Pseudomonas aeruginosa that mediate adherence to epithelial cell-surface receptors. The pili of P. aeruginosa strains PAK and PAO were examined and found to bind gangliotetraosyl ceramide (asialo-GM1) and, to a lesser extend, ll3N-acetylneuraminosylgangliotetraosyl ceramide (GM1) in solid-phase binding assays. Asialo-GM1, but not GM1, inhibited both PAK and PAK pili binding to immobilized asialo-GM1 on the microtitre plate. PAO pili competitively inhibited PAK pili binding to asialo-GM1, suggesting the presence of a structurally similar receptor-binding domain in both pilus types. The interaction between asialo-GM1 and pili occurs at the pilus tip as asialo-GM1 coated colloidal gold only decorates the tip of purified pili. Three sets of evidence suggest that the C-terminal disulphide-bonded region of the Pseudomonas pilin is exposed at the tip of the pilus: (i) immunocytochemical studies indicate that P. aeruginosa pili have a basal-tip structural differentiation where the monoclonal antibody (mAb) PK3B recognizes an antigenic epitope displayed only on the basal ends of pili (produced by shearing) while the mAb PK99H, whose antigenic epitope resides in residues 134–140 (Wong et al., 1992), binds only to the tip of PAK pili; (ii) synthetic peptides, PAK(128–144)ox-OH and PAO(128–144)ox-OH, which correspond to the C-terminal disulphide-bonded region of Pseudomonas pilin are able to bind to asialo-GM1 and inhibit the binding of pili to the glycolipid; (iii) PK99H was shown to block PAK pilus binding to asialo-GM1 Monoclonal antibody PK3B had no effect on PAK pili binding to asialo-GM1 Thus, the adherence of the Pseudomonas pilus to glycosphingolipid receptors is a tip-associated phenomenon Involving a tip-exposed C-terminal region of the pilin structural subunit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of computer aided molecular design 8 (1994), S. 193-210 
    ISSN: 1573-4951
    Keywords: Homology ; Family ; Database
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary A new database of conserved amino acid residues is derived from the multiple sequence alignment of over 84 families of protein sequences that have been reported in the literature. This database contains sequences of conserved hydrophobic core patterns which are probably important for structure and function, since they are conserved for most sequences in that family. This database differs from other single-motif or signature databases reported previously, since it contains multiple patterns for each family. The new database is used to align a new sequence with the conserved regions of a family. This is analogous to reports in the literature where multiple sequence alignments are used to improve a sequence alignment. A program called Homology-Plot (suitable for IBM or compatible computers) uses this database to find homology of a new sequence to a family of protein sequences. There are several advantages to using multiple patterns. First, the program correctly identifies a new sequence as a member of a known family. Second, the search of the entire database is rapid and requires less than one minute. This is similar to performing a multiple sequence alignment of a new sequence to all of the known protein family sequences. Third, the alignment of a new sequence to family members is reliable and can reproduce the alignment of conserved regions already described in the literature. The speed and efficiency of this method is enhanced, since there is no need to score for insertions or deletions as is done in the more commonly used sequence alignment methods. In this method only the patterns are aligned. HomologyPlot also provides general information on each family, as well as a listing of patterns in a family.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...