Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (3)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 715-720 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The thermal stability of unsupported alumina membrane top-layers was studied by determining the pore structure (mainly pore size) change of alumina gels, prepared by sol-gel methods, after sintering at different temperatures ranging from 450 to 1200 °C. The average pore size of the pure alumina membranes and PVA-added membranes increased sharply after sintering at temperatures higher than 1000 °C. Addition of 3% lanthanum, either by mixing lanthanum nitrate in the alumina sol or impregnating lanthanum nitrate into calcined alumina gel, followed by a second heat treatment, can considerably stabilize the pore structure of the alumina membrane top-layers. The pore diameter for the lanthanum-doped membranes was stabilized within 25 nm after sintering at 1200 °C for 30 h, about one-sixth of that for the pure alumina membranes after sintering at 1200 °C for 30 h. The substantial increase in the pore size for the pure alumina membranes at the sintering temperature of 1000 to 1200 °C was accompanied by the phase transformation from γ-to α-alumina. The addition of lanthanum can raise this phase transformation temperature by about 200 °C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 36 (1990), S. 1569-1576 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical analysis for the pulse responses of a liquid chromatographic column packed with crystal powders having a particle size distribution and a nonlinear adsorption isotherm is presented. The mathematical model is solved numerically by the orthogonal collocation method. Based on the parametric analysis of the model, the effects of a symmetrical and moderately asymmetric PSD on the LC responses are shown to be negligible in comparison with the effects of other parameters, such as isotherm nonlinearity, whose effects are much more profound. The simulated responses are compared with the experimental response data for an LC column packed with silicalite crystals, and a good agreement is found between the theoretical and experimental results. Using the nonlinear LC model, the simultaneous determination of nonlinear adsorption isotherms and intraparticle diffusivities from LC pulse responses is demonstrated for liquids in porous adsorbents.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 38 (1992), S. 445-454 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The deposition of yttria-doped zirconia has been experimented systematically in various types of porous ceramic substrates by a modified chemical vapor deposition (CVD) process operating in an opposing reactant geometry using water vapor and corresponding metal chloride vapors as reactants. The effects of substrate pore dimension and structure, bulk-phase reactant concentration, reactant diffusivity in substrate pores and deposition temperature are experimentally studied and explained qualitatively by a theoretical modeling analysis. The experimental and theoretical results suggest a reaction mechanism which depends on water vapor and chloride vapor concentrations. Consequently, the diffusivity, bulk-phase reactant concentration, and substrate pore dimension are important in the CVD process. Effects of deposition temperature on the deposition results and narrow deposition zone compared to the substrate thickness also suggest a Langmuir-Hinshelwood reaction mechanism involved in the CVD process with a very fast CVD reaction rate. Gas permeation data indicate that whether deposition of solid in substrate pores could result in the pore-size reduction depends strongly on the initial pore-size distribution of the substrate.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...