Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 33 (1991), S. 259-266 
    ISSN: 1432-1432
    Keywords: DNA sequence analysis ; Frequencies ; Sequence patterns ; DNA structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The eukaryotic and prokaryotic databases are scanned for potential nearest-neighbor doublet preferences at the 5′ and 3′ flanks of some oligomers. Here we focus on oligomers containing alternating nucleotides, i.e., UV, UVUV, and UUVV where U≠V. Strong, consistent trends are observed in eukaryotic sequences. A/T alternation oligomers are preferentially flanked by A/T. G/C flanks are disfavored. G/C alternation oligomers are preferentially flanked by G/C. A/T flanks are disfavored. These trends are consistent with those observed previously for homooligomer tracts (Nussinov et al. 1989a,b). G/C tracts are preferentially flanked by G/C. A/T nearest neighbors are disfavored. The reverse holds for A/T tracts. Additional patterns are described here as well. The possible origin of these DNA composition and sequence trends is discussed. These trends are suggested to stem from protein-DNA interaction constraints.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 18 (1994), S. 94-101 
    ISSN: 0887-3585
    Keywords: surface representation ; molecular recognition ; protein docking ; surface triangulation ; molecular graphics ; molecular visualization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We have defined a molecular surface representation that describes precisely and concisely the complete molecular surface. The representation consists of a limited number of critical points disposed at key locations over the surface. These points adequately represent the shape and the important characteristics of the surface, despite the fact that they are modest in number. We expect the representation to be useful in areas such as molecular recognition and visualization. In particular, using this representation, we are able to achieve accurate and efficient protein-protein and protein-small molecule docking. © 1994 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 16 (1993), S. 278-292 
    ISSN: 0887-3585
    Keywords: protein structural comparison ; 3-D protein motifs ; surface motifs ; docking ; computer vision ; geometric hashing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We describe the application of a method geared toward structural and surface comparison of proteins. The method is based on the Geometric Hashing Paradigm adapted from Computer Vision. It allows for comparison of any two sets of 3-D coordinates, such as protein backbones, protein core or protein surface motifs, and small molecules such as drugs. Here we apply our method to 4 types of comparisons between pairs of molecules: (1) comparison of the backbones of two protein domains; (2) search for a predefined 3-D Cα motif within the full backbone of a domain; and in particular, (3) comparison of the surfaces of two receptor proteins; and (4) comparison of the surface of a receptor to the surface of a ligand. These aspects complement each other and can contribute toward a better understandingof protein structure and biomolecular recognition. Searches for 3-D surface motifs can be carried out on either receptors or on ligands. The latter may result in the detection of pharmacophoric patterns. If the surfaces of the binding sites of either the receptors or of the ligands are relatively similar, surface superpositioning may aid significantly in the docking problem. Currently, only distance invariants are used in the matching, although additional geometric surface invariants are considered. The speed of our Geometric Hashing algorithm is encouraging, with a typical surface comparison taking only seconds or minutes of CPU time on a SUN 4 SPARC workstation. The direct application of this method to the docking problem is also discussed. We demonstrate the success of this methodin its application to two members of the globin family and to two dehydrogenases. © 1993 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 34 (1994), S. 933-940 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A matching algorithm using surface complementarity between receptor and ligand protein molecules is outlined. The molecular surfaces are represented by “critical points,” describing holes and knobs. Holes (maxima of a shape function) are matched with knobs (minima). This simple and appealing surface representation has been previously described by Connolly [(1986) Biopolymers, Vol. 25, pp. 1229-1247]. However, attempts to implement this description in a docking scheme have been unsuccessful (e.g., Connolly, ibid.). In order to decrease the combinatorial complexity, and to make the execution time affordable, four critical hole/knob point matches were sought. This approach failed since some bound interfaces are relatively flat and do not possess four critical point matches. On the other hand, matchings of fewer critical points require a very time-consuming, full conformational (grid) space search [Wang, (1991) Journal of Computational Chemistry, Vol. 12, pp. 746-750]. Here we show that despite the initial failure of this approach, with a simple and straightforward modification in the matching algorithm, this surface representation works well. Out of the 16 protein-protein complexes we have tried, 15 were successfully docked, including two immunoglobulins. The entire molecular surfaces were considered, with absolutely no additional information regarding the binding sites. The whole process is completely automated, with no manual intervention, either in the input atomic coordinate data, or in the matching. We have been able to reach this level of performance with the hole/knob surface description by using pairs of critical points along with their surface normals in the calculation of the transformation matrix. The success of this approach suggests that future docking methods should use geometric docking as the first screening filter. As a geometrically based docking methodology predicts correct, along with incorrect, receptor-ligand bound conformations, all solutions need to undergo energy screening to differentiate between them. © 1994 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...